Модель оценки финансовых активов
Предположения
Для того чтобы понять, как складываются цены финансовых активов, необходимо сконструировать модель. Это требует упрощений, позволяющих создателю модели абстрагироваться от всей сложности ситуации и рассматривать только наиболее важные ее элементы. С этой целью формулируются определенные предположения об объекте исследования. Эти упрощающие предположения призваны обеспечить степень абстракции, позволяющую построить модель.
Это следующие предположения:
1. Инвесторы производят оценку инвестиционных портфелей, основываясь на ожидаемых доходностях и их стандартных отклонениях за период владения.
2. Инвесторы никогда не бывают пресыщенными. При выборе между двумя портфелями они предпочтут тот, который, при прочих равных условиях, дает наибольшую ожидаемую доходность.
3. Инвесторы не желают рисковать. При выборе между двумя портфелями они предпочтут тот, который, при прочих равных условиях, имеет наименьшее стандартное отклонение.
4. Частные активы бесконечно делимы. При желании инвестор может купить часть акции.
5. Существует безрисковая процентная ставка, по которой инвестор может дать взаймы (т.е. инвестировать) или взять в долг денежные средства.
6. Налоги и операционные издержки несущественны.
Эти предположения дополняются следующими:
7. Для всех инвесторов период вложения одинаков.
8. Безрисковая процентная ставка одинакова для всех инвесторов.
9. Информация свободно и незамедлительно доступна для всех инвесторов.
10. Инвесторы имеютоднородные ожидания, т.е. они одинаково оценивают ожидаемые доходности, среднеквадратичные отклонения и ковариации доходностей ценных бумаг.
Как вытекает из этих предположений, в САРМ рассматривается предельный случай. Все инвесторы обладают одной и той же информацией и по-одинаковому оценивают перспективы ценных бумаг. Неявно это означает, что они одинаковым образом анализируют получаемую информацию. Рынки ценных бумаг являютсясовершеннымирынками в том смысле, что в них нет факторов, которые бы препятствовали инвестициям. Такие потенциальные препятствия, как ограниченная делимость, налоги, операционные издержки, и различие между ставками безрискового заимствования и кредитования считаются отсутствующими. Это позволяет сместить фокус рассмотрения с того, как следует инвестору размещать свои средства, на то, что произойдет с курсами ценных бумаг, если все инвесторы будут поступать одинаково. Исследуя коллективное поведение всех инвесторов на рынке, можно выявить характер конечной равновесной зависимости между риском и доходностью каждой ценной бумаги.
Уравнение модели САРМ
В модели САРМ простым образом определяется связь между риском и доходностью эффективных портфелей. Это наглядно представлено на рисунке ниже:
Точка М обозначает рыночный портфель, а rf представляет собой безрисковую ставку доходности. Эффективные портфели находятся вдоль прямой, пересекающей ось ординат в точке с координатами (0, r) и проходящей через М, и образуются альтернативными комбинациями риска и доходности, получаемыми в результате сочетания рыночного портфеля с безрисковым заимствованием или кредитованием. Это линейное эффективное множество в САРМ известно под названиемрыночная линия (Capital Market Line, CML). Все остальные портфели, не использующие рыночный портфель в комбинации с безрисковым заимствованием или кредитованием, будут лежать ниже рыночной прямой, хотя некоторые могут располагаться в непосредственной близости от нее.
Наклон СМL равен разнице между ожидаемой доходностью рыночного портфеля и безрисковой бумаги, деленной на разницу их рисков. Так как СМL пересекает вертикальную ось в точке с координатами (0, r), то уравнение СМL имеет вид:
Состояние равновесия на рынке ценных бумаг может быть охарактеризовано двумя ключевыми величинами. Первая - это ордината точки пересечения СМL с вертикальной осью (т.е. безрисковая ставка), которую часто называют наградой за ожидание. Вторая — это наклон СМL, который называют наградой за единицу принятого риска.