Научные традиции и научные революции.

1. Традиции и новации в развитии науки.

2. Научные революции как смена оснований науки.

3. Научные революции как смена типов научной рациональности.

1.Рассмотренные нами в предыдущей лекции концепции и модели роста научного знания, разработанные философами науки постпозитивизма, обнаружили тот явный, но скрытый до них факт: научное знание не просто накапливается, аккумулируется и расширяется, оноразвивается, и в ходе развития меняются его принципы, методы и структура науки в целом.

Особый интерес в этом отношении представляет модель роста научного знания Т.Куна. Разделив существование науки на два периода – нормальный (парадигмальный) и экстраординарный или революционный, он, как известно, указал на ряд существенных характеристик этих периодов. В рамках периода нормальной науки ученый работает в жестких рамках парадигмы, понимаемой как совокупность методов, знаний, образцов решения конкретных задач, ценностей, разделяемых всем научным сообществом. Другими словами, парадигма в данном случае тождественна понятию «традиция». Именно она помогает ученому систематизировать и объяснить факты, совершенствовать способы решения возникающих проблем и задач, открывать новые факты на основе предсказаний господствующей теории. Период парадигмальной (нормальной) науки «не ставит себе цели создания новой теории…». Тогда как объяснить их появление? Кун дает ответ на этот естественно возникающий вопрос, объясняя, что ученый, действуя по правилам господствующей парадигмы, случайно и побочным образом наталкивается на необъяснимые с ее точки зрения явления и факты, что и приводит в конечном итоге к необходимости изменения правил научного объяснения и исследованию. Получается, согласно логике Куна, что парадигма (или традиция) хотя и не имеет цели создания новых теорий, тем не менее способствует их появлению. Однако теория науки изобилует примерами как раз обратного действия – когда парадигма, задавая определенный «угол» зрения, сужает, если так можно выразиться, зрение ученого и все, что находится за ее пределами, просто не воспринимается или если и воспринимается, то «подгоняется» под существующую традиционную точку зрения, что нередко приводит к заблуждениям.

Обозначенная проблема поставила перед философами науки задачу – выяснить механизмы соотношения традиций и новаций в науке. В результате осмысления этой проблемы возникли две важные идеи: многообразия научных традиций и структуры новаций, их взаимодействия на основе преемственности.

Большая заслуга в этом вопросе принадлежит отечественным философам науки. Так, в работах В.С. Степина и М.А. Розова говорится о многообразии традиций и их взаимодействии. Традиции различаются, прежде всего, по способу их существования – они либо выражены в текстах, монографиях, учебниках, либо не имеют четко выраженного вербальными средствами (средствами языка) существования. Эту идею высказал в одной из своих наиболее известных работ «Неявное знание» Майкл Полани[53]. Отталкиваясь от этих идей М.Полани и развивая концепцию научных революций Т.Куна, М.А. Розов выдвигает концепцию социальных эстафет, где под эстафетой понимается передача какой-либо деятельности или формы поведения от человека к человеку, от поколения к поколению путем воспроизводства определенных образцов. Применительно к философии науки эта концепция выступает как множество взаимодействующих друг с другом «программ», частично вербализованных, но в основном заданных на уровне образцов, передающихся от одного поколения ученых к другому. Он выделяет два типа таких образцов: а) образцы-действия и б) образцы-продукты. Образцы действия позволяют продемонстрировать как совершаются те или иные научные операции. А вот как они замысливаются, как появляются аксиомы, догадки, «красивые» эксперименты – т.е. все то, что составляет момент творчества, передать невозможно. Таким образом, получается, что парадигма, или научная традиция, не является жесткой системой, она открыта, включает в себя как явное, так и неявное знание, которое ученый черпает не только из науки, но и из других сфер жизнедеятельности, его личных интересов, пристрастий, обусловленных влиянием той культуры, в которой он живет и творит. Таким образом, можно говорить о многообразии традиций – научных вообще, традиций, принятых в конкретной науке, и традиций, обусловленных культурой, и все они взаимодействуют, т.е. испытывают на себе их влияние.

Как же возникают новации[54]? Обратимся к концепции М.А. Розова, который, прежде всего, уточняет, что такое «новация». Новация как новое знание по своей структуре включает в себянезнание и неведение. «Незнание» - это такой момент в процессе познания, когда ученый знает, чего он не знает, и продумывает ряд целенаправленных действий, используя уже имеющиеся знания о тех или иных процессах или явлениях. Полученное новое в данном случае выступает как расширение знания о чем-то уже известном.

Неведение – это «незнание о том, чего не знаешь». В науке часто случается так, что открываются какие-то феномены, которые невозможно объяснить с помощью имеющихся знаний, процедур познавательного процесса. К примеру, открытие «черных дыр» астрофизиками позволяло говорить об этом феномене в терминах «мы не знаем, как объяснить данный феномен, что из известного относится к данному феномену». Неведение исключает целенаправленный, организованный поиск, применение существующих методов, построение исследовательской программы – оно находится за пределами возможностей познавательной деятельности ученого в данной традиции. Как же преодолевается эта проблема, если новые открытия в науке все-таки становятся достоянием знания?

М.А. Розов указывает на следующие пути ее преодоления:

Путь (или концепция) пришельца. В какую-то науку приходит ученый из другой области, не связанный ее традициями и способный решать проблемы с помощью методов и традиций «своей» (из которой он пришел) области науки. Таким образом, он работает в традиции, но применяет ее к другой области, производя «монтаж» методов разных областей науки. Не секрет, что многие новейшие открытия в области естествознания становились новыми научными открытиями именно на стыке, к примеру, физики и астрономии, химии и биологии...

1. Путь (или концепция) побочных результатов. Часто ученые, работающие в одной области, случайно наталкиваются на такие результаты, которые ими не планировались и представляют собой необычное явление для той традиции, в рамках которой они работают. Эта необычность требует объяснения, и тогда ученые обращаются за помощью к традиции или даже традициям других сложившихся в познании традиций.

2. Третий путь (или концепция) – «движение с пересадками». Зачастую побочные результаты, полученные в рамках одной традиции, являются для нее неперспективными, бесполезными, но они могут оказаться важными для традиции другой области знаний. Этот прием М.А. Розов называет «движением с пересадкой» одних традиций на другие, в результате чего возникает новое знание.

Все вышеизложенное позволяет сделать следующие выводы: новации в науке возможны лишь в рамках традиций (что подтверждает идею Т.Куна), однако существует многообразие традиций, что позволяет говорить о междисциплинарности (взаимодействии традиций) как важнейшем условии получения нового знания.

2. Как отмечалось выше, перестройка исследовательских стратегий в конечном, итоге влечет за собой кардинальные, революционные изменения, в ходе которых происходит либо изменение картины мира (при этом идеалы и нормы научного исследования остаются неизменными), либо одновременно с изменением картины мира меняются не только идеалы и нормы науки, но и ее философские основания.

Научные революции по результатам и степени их влияния на развитие науки разделяются на глобальные научные революции и на «микрореволюции» в отдельных науках; последние приводят к созданию новых теорий только в той или иной области науки и меняют представления об определенном, сравнительно узком, круге явлений, не оказывая существенного влияния на научную картину мира и философские основания науки в целом.

Глобальные научные революции приводят к формированию совершенно нового видения мира и влекут за собой новые способы и методы познания. Глобальная научная революция может первоначально происходить в одной из фундаментальных наук (или даже формировать эту науку), превращая ее в лидера науки. Кроме того, следует учитывать и тот факт, что научные революции – событие не кратковременное, поскольку коренные изменения требуют определенного времени.

Первая научная революция произошла в эпоху, которую можно назвать переломной – XV-XVI вв. – время перехода от Средневековья к Новому времени, которое впоследствии получило название эпохи Возрождения. Этот период ознаменован появлением гелиоцентрического учения польского астронома Николая Коперника (1473-1543)[55]. Его учение перевернуло предшествующую картину мира, опирающуюся на геоцентрическую систему Птолемея – Аристотеля. «Солнце, как бы восседая на царском престоле, управляет вращающимся около него семейством светил». Коперник указал не только на тот факт, что Земля – одна из планет, движущихся вокруг Солнца по круговым орбитам и в то же время вращающаяся вокруг своей оси, но и на важную идею о движении как естественном свойстве небесных и земных объектов, подчиненном общим закономерностям единой механики. Эта идея опровергала представление Аристотеля о неподвижном «перводвигателе», якобы приводящем в движение Вселенную. В свою очередь, это открытие обнаружило несостоятельность принципа познания, опирающегося на непосредственное наблюдение и доверие к показаниям чувственных данных (визуально мы видим,что Солнце «ходит» вокруг Земли), и указывало на плодотворность критического отношения к показаниям органов чувств.

Таким образом, учение Коперника явилось революцией в науке, поскольку его открытие подорвало основу религиозной картины мира, исходящей из признания центрального положения Земли, а следовательно, и о месте человека в мироздании как его центре и конечной цели. Кроме того, религиозное учение о природе противопоставляло земную, тленную материю – небесной, вечной, неизменной.

Тем не менее, Коперник не мог не следовать и определенным традиционным взглядам на Вселенную. Так, он полагал, что Вселенная конечна, она где-то завершается твердой сферой, к которой каким-то образом прикреплены звезды.

Прошло почти сто лет, прежде чем другой великий мыслитель этого, столь плодотворного на смелые идеи и открытия, периода сумел «перегнать» Коперника. Джордано Бруно (1548-1600) в работе «О бесконечности Вселенной и мирах» изложил тезис о бесконечности Вселенной и о множестве миров, которые, возможно, обитаемы. Эта научная работа также является вкладом в первую научную революцию, сопровождающуюся разрушением предшествующей картины мира.

Вторая научная революция, начавшаяся в XVII веке, растянулась почти на два столетия. Она была подготовлена идеями первой научной революции – в частности, поставленная проблема движения становится ведущей для ученых этого периода. Галилео Галилей (1564-1642) разрушил общепризнанный в науке того времени принцип, согласно которому тело движется только при наличии и воздействии на него внешнего воздействия, а если оно прекращается, то тело останавливается (принцип Аристотеля, вполне согласующийся с нашим повседневным опытом). Галилей сформулировал совершенно иной принцип: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости движения, если на него не производится какого-либо внешнего воздействия (принцип инерции). И опять мы видим, как происходит изменение к самому принципу исследовательской деятельности – не доверять показаниям непосредственных наблюдений.

Такие открытия, как обнаружение весомости воздуха, закон колебания маятника и ряд других, явились результатом нового метода исследования – эксперимента (см. об этом лекцию № 3). Заслуга Галилея заключается в том, что он ясно указал, что вера в авторитеты (в частности, Аристотеля, отцов церкви) тормозит развитие науки, что истина открывается путем изучения природы при помощи наблюдения, эксперимента и разума, а не изучения и сравнения текстов античных мыслителей (или Библии).

Вторая научная революция завершилась научными открытиями Исаака Ньютона (1643-1727). Главная заслуга его научной деятельности заключается в том, что он завершил начатую Галилеем работу по созданию классической механики. Ньютон считается основателем и создателем механистической картины мира, заменившей Аристотеле-Птолемеевскую. Ньютон первый открыл универсальный закон – закон всемирного тяготения, которому подчинялось все – малое и большое, земное и небесное. Его картина мира поражала простотой и ясностью: в ней отсекалось все лишнее – размеры небесных тел, их внутреннее строение, происходящие в них бурные процессы, оставались массы и расстояния между их центрами, связанные формулами.

Ньютон не только завершил процесс изменения научной картины мира, начавшийся с Коперника, не только утвердил новые принципы научного исследования – наблюдение, эксперимент и разум – он сумел создать новую исследовательскую программу. В работе «Математические начала натуральной философии» он излагает свою исследовательскую программу, которую называет «экспериментальная философия», где указывается на решающее значение опыта, эксперимента в изучении природы.

Открытия в физике, астрономии, механике дали мощный толчок развитию химии, геологии, биологии.

Механистическая картина мира, однако, оставалась, выражаясь языком Куна, парадигмой вплоть до конца XIX в. В этот период происходит ряд открытий, подготовивших в дальнейшем удар по механистической картине мира. Идея развития знаменует третью научную революцию в естествознании (XIX-XX вв.). Эта идея начала пробивать себе дорогу сначала в геологии, затем – в биологии и завершилась она эволюционизмом. Затем учеными был провозглашен принцип всеобщей связи процессов и явлений, наличествующих в природе. Подтверждением ему становятся открытия: клеточная теория строения организмов, закон превращения одной формы энергии в другую, доказывающий идею единства, взаимосвязанности материального мира, – одним словом, происходит диалектизация естествознания, которая и составляет суть третьей научной революции. Одновременно происходил процесс очищения естествознания от натурфилософии. В конечном итоге, третья научная революция разрушила механистическую картину мира, опирающуюся на старую метафизику, открыв дорогу новому пониманию физической реальности.

Четвертая научная революция началась с целого каскада научных открытий (о них говорилось в лекции № 3) конца XIX-XX вв. Ее результатом являются разрушение классической науки, ее оснований, идеалов и принципов и установление неклассического этапа, характеризующегося квантово-релятивистскими представлениями о физической реальности.

Таким образом, первая научная революция сопровождалась изменениями картины мира; вторая, хотя и сопровождалась окончательным становлением классического естествознания, способствовала пересмотру идеалов и норм научного познания; третья и четвертая привели к пересмотру всех указанных компонентов основания классической науки.

3. Глобальные революции сопровождаются также и сменой типов рациональности. Рациональность не следует отождествлять только с наукой – в широком смысле слова можно говорить о рациональности всей европейской культуры – своего рода принципе жизнедеятельности человека, его способности самостоятельно мыслить и принимать решения. «Имей мужество пользоваться собственным умом … без руководства со стороны кого-то другого», - так понимал И.Кант рациональность эпохи Просвещения.

Начиная с XVII века, рациональность отождествляется с наукой, научной рациональностью. Однако с середины 60-х годов XX века философами науки все чаще рациональность науки ставится под сомнение, критически осмысливается. Можно выделить 2 сформировавшиеся в их среде позиции: 1) наука не является прототипом рациональности; 2) претензии науки на рациональность есть «рациофашизм» (П.Фейерабенд).

Принцип историзма, ставший ключевым в анализе науки (Т.Кун, И.Лакатос и др.), позволил говорить и об историчности рационализма, привел к выводам о том, что научная рациональность, как и наука, исторически меняется.

Исторически первой формой рациональности является не наука, а философия (в частности, античная). Парменид, древнегреческий философ, провозгласил принцип тождества мышления и бытия. Бытие в его понимании это то, о чем можно лишь мыслить, поскольку оно не сводится к вещам чувственного мира, это своего рода мышление о мышлении, об идеальных объектах, моделях, не совпадающих с объектами повседневной жизни. Платон развил дальше эту идею, создав учение о бытии как мире бестелесных сущностей, который можно «узреть» только внетелесным путем – взлетом мысли. Таким образом, в Античности был провозглашен принцип рациональности, согласно которому истину можно узреть лишь умом, не прибегая к чувственным показаниям. Теоретичность, умозрительность была уделом философов – людей, которые, отвлекаясь от практически-житейских интересов и проблем, постигали мир вечных, не уничтожаемых временем, сущностей – мир идей, понятий, их взаимосвязей. Однако результатом такой работы должно было стать слово, язык, в котором уточнялась сущность таких понятий, как Красота, Добро, Благо и т.д. Выраженность в языке, в слове должна была соответствовать таким требованиям, как точность, однозначность значений слов – то, что соответствует понятию «рациональность». Философская рациональность Античности была представлена в логике Аристотеля, его поэтике, риторике, грамматике.

Бытие есть разум – эта формула Парменида указывала на то, что речь идет не об индивидуальном, а о Космическом разуме, который открывается человеку (а не человек открывает истину). Поэтому логика не является свойством и способностью человека, это то, с помощью чего Разум руководит человеческим умом. Человеческий разум есть проекция Божественного, Космического разума.

И еще один важный момент: Космический, Божественный Разум древних греков наделялся главной функцией – познания целевой причины. Все, что существует – существует ради чего-то, конечная цель имеет онтологический статус, и о ней знает только Разум. Признание целевой причины, которая движет «как предмет любви», вносило смысл в природу, в процесс ее познания и не позволяло относиться к ней как к объекту эксплуатации.

Первая научная революция, произошедшая в Западной Европе, сформировала особый тип рациональности – научный. Два основополагающих принципа философской рациональности - тождество мышления и бытия - и идеальный план работы мысли были сохранены, но изменены по содержанию.

Бытие перестало рассматриваться как Абсолют, Бог, Единое, а Космос был отождествлен с природой, которая понималась как единственная реальность, вещественный универсум («Бытие – природа»). В свою очередь, это «Бытие – природа» рассматривалось как набор статичных объектов (не изменяемых, не развивающихся) с набором элементов, входящих в поле причинно-следственных связей.

Человеческий разум не отождествляется больше с Божественным, Космическим, а наделяется статусом суверенности. В познании укоренилось представление о том, что разум наблюдает и исследует природу вещей как бы со стороны. Объективность, т.е. независимость от субъекта, безразличное к ценностям субъекта знание становится идеалом научной рациональности. Если античная рациональность признавала способность мышления работать с идеальными объектами без их привязки к вещественным проявлениям, то научная рациональность признавала правомерность только тех идеальных объектов, которые можно воспроизвести, повторить в эксперименте. Мыслительным, идеальным экспериментом этого периода становится математика: научным признавалось только то, что могло быть конструировано и выражено языком математики. Если в Античности математика имела некий духовно-мистический смысл, то великий Галилей превратил ее в технику исследования.

Первая научная революция «изъяла» из природы и античную целевую причину – научная рациональность заменила ее поисками механических причинно-следственных связей. Устранение цели из природы, Космоса превратило его в пустое, безликое пространство.

Таким образом, итогом первой научной революции было формирование нового научного типа рациональности, который характеризуется механистичностью, отсутствием историчности, объективностью, жесткой причинно-следственной детерминацией. Этот тип рациональности определяется как классический.

Вторая и третья научные революции (конец XVIII – первая половина XIX вв.; конец XIX – середина XX вв.) разрушили механистический взгляд на мир благодаря идее развития. Диалектизация природы привела к представлениям об историчности познающего субъекта, его разума. Истина стала определяться как историческая, имеющая привязку к определенному времени. Появляются идеи, в которых указывается на необходимость введения субъективного фактора в содержание научного знания. Начинает размываться принцип тождества мышления и бытия: если в классической рациональности господствовало убеждение, что природа расчленена соответственно категориям нашего мышления, то в период второй революции возникает проблема: как избежать того, чтобы образ теории «не начал казаться собственно бытием» (Больцман). В этот же период была поставлена под сомнение возможность слов адекватно отражать, выражать содержание мышления и образа действительности.

Третья научная революция размыла классический тип рациональности и утвердиланеклассическую рациональность. Основными содержательными элементами этого типа рациональности являются:

1. Объект не дан мышлению в первозданном виде; мышление изучает объект в том виде, в каком он предстает ему во взаимодействии с прибором.

2. Поскольку любой эксперимент в науке проводится исследователем, то и его результаты зависят от того, какие вопросы он задает в начале исследования и как отвечает на них в конце (субъективизм).

3. Возникло сомнение в возможностях субъекта реализовать идеальные модели, сконструированные разумом, поскольку само бытие сложно, многогранно, «непрозрачно» («скептицизм»).

4. Идеал единственно возможной теории, способной с фотографической точностью отразить исследуемый объект, заменило представление об истинности и допустимости нескольких отличающихся друг от друга описаний одного и того же объекта (плюрализм); исследователи признают относительность истин и картины природы, формировавшиеся на том или ином этапе естествознания.

Четвертая научная революция развернулась в последней трети XX столетия и продолжается по наши дни. Характерной ее чертой является смена объектов исследования – ими становятся исторически меняющиеся объекты в их диалектическом единстве и взаимодействии (следует отметить, что историческая реконструкция до этого широко применялась в гуманитарных науках – истории, археологии, языкознании, а также ряде естественных – космологии, астрологии, физике элементарных частиц и др.), Земля как система взаимодействия геологических, биологических, техногенных процессов; Вселенная как система взаимодействия микро-, макро- и мегамира. Рассматривая, изучая сам принцип взаимодействия, исследователи точку отсчета ведут от человека, его деятельности и последствий такой деятельности. Кроме того, и сам исследователь является активным субъектом изучаемых им объектов. Поскольку современная наука имеет дело с чрезвычайно сложными системами, требующими построения идеальных моделей со сложными параметрами и переменными, требуется помощь компьютерных программ, математических экспериментов на ЭВМ и пр.

Изучение последствий деятельности человека для биосферы и в целом для жизни человечества предполагает учет и оценку общественного мнения, а также обращения к этическим ценностям.

Выход науки на проблемы Вселенной, Космоса, появление таких новых наук, как синергетика, астрофизика, космология, свидетельствуют о повороте современной науки к глубинным философским проблемам: почему во Вселенной все устроено так, а не иначе, почему в ней все находится во взаимодействии, что или кто за этим стоит? Ответы на эти вопросы не могут быть получены чисто научными средствами, здесь необходимы знания, накопленные и дорациональными, и внерациональными формами познания.

Лекция 13

Наши рекомендации