Упрощение логической формулы

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.

Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул:

1) Упрощение логической формулы - student2.ru (законы алгебры логики применяются в следующей последовательности: правило де Моргана, сочетательный закон, правило операций переменной с её инверсией и правило операций с константами);

2) Упрощение логической формулы - student2.ru (применяется правило де Моргана, выносится за скобки общий множитель, используется правило операций переменной с её инверсией);

3) Упрощение логической формулы - student2.ru (повторяетсявторойсомножитель, что разрешено законом идемпотенции; затем комбинируются два первых и два последних сомножителя и используется закон склеивания);

4) Упрощение логической формулы - student2.ru (вводится вспомогательный логический сомножитель ( Упрощение логической формулы - student2.ru ); затем комбинируются два крайних и два средних логических слагаемых и используется закон поглощения);

5) Упрощение логической формулы - student2.ru (сначаладобиваемся, чтобы знак отрицания стоял только перед отдельными переменными, а не перед их комбинациями, для этого дважды применяем правило де Моргана; затем используем закон двойного отрицания);

6) Упрощение логической формулы - student2.ru (выносятся за скобки общие множители; применяется правило операций с константами);

7) Упрощение логической формулы - student2.ru (к отрицаниям неэлементарных формул применяется правило де Моргана; используются законы двойного отрицания и склеивания);

8) Упрощение логической формулы - student2.ru (общий множитель x выносится за скобки, комбинируются слагаемые в скобках — первое с третьим и второе с четвертым, к дизъюнкции Упрощение логической формулы - student2.ru применяется правило операции переменной с её инверсией);

9) Упрощение логической формулы - student2.ru (используются распределительный закон для дизъюнкции, правило операции переменной с ее инверсией, правило операций с константами, переместительный закон и распределительный закон для конъюнкции);

10) Упрощение логической формулы - student2.ru (используются правило де Моргана, закон двойного отрицания и закон поглощения).

Из этих примеров видно, что при упрощении логических формул не всегда очевидно, какой из законов алгебры логики следует применить на том или ином шаге. Навыки приходят с опытом.

Переключательная схема

В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики.

Переключательная схема – это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Будем считать, что два переключателя Х и Упрощение логической формулы - student2.ru связаны таким образом, что когда Х замкнут, то Упрощение логической формулы - student2.ru разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменная х, то переключателю Упрощение логической формулы - student2.ru должна соответствовать переменная Упрощение логической формулы - student2.ru .

Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости.

Найдем функции проводимости F некоторых переключательных схем:

a) Упрощение логической формулы - student2.ru

Схема не содержит переключателей и проводит ток всегда, следовательно F=1;

б) Упрощение логической формулы - student2.ru

Схема содержит один постоянно разомкнутый контакт, следовательно F=0;

в) Упрощение логической формулы - student2.ru

Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x;

г) Упрощение логической формулы - student2.ru

Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = Упрощение логической формулы - student2.ru;

д) Упрощение логической формулы - student2.ru

Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = x . y;

е) Упрощение логической формулы - student2.ru

Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y;

ж) Упрощение логической формулы - student2.ru

Схема состоит из двух параллельных ветвей и описывается функцией Упрощение логической формулы - student2.ru .

Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале).

Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И.Журавлев, С.В.Яблонский и др.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работысводится к следующим трём этапам:

  1. составлению функции проводимости по таблице истинности, отражающей эти условия;
  2. упрощению этой функции;
  3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к

  1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
  2. получению упрощённой формулы.

Примеры.

1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.

Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид F(x, y, z, t) = t . (x v y v z), а схема выглядит так:

Упрощение логической формулы - student2.ru

2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.

Упрощение логической формулы - student2.ru

Схема имеет вид:

Упрощение логической формулы - student2.ru

3. Найдем функцию проводимости схемы:

Упрощение логической формулы - student2.ru

Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости F(a, b, c, d, e) = a . b v a . e . d v c . d v c . e . b.

4. Упростим переключательные схемы:

а) Упрощение логической формулы - student2.ru

Решение: Упрощение логической формулы - student2.ru

Упрощенная схема: Упрощение логической формулы - student2.ru

б) Упрощение логической формулы - student2.ru

Упрощение логической формулы - student2.ru .

Здесь первое логическое слагаемое Упрощение логической формулы - student2.ru является отрицанием второго логического слагаемого Упрощение логической формулы - student2.ru , а дизъюнкция переменной с ее инверсией равна 1.

Упрощенная схема : Упрощение логической формулы - student2.ru

в) Упрощение логической формулы - student2.ru

Упрощение логической формулы - student2.ru

Упрощенная схема: Упрощение логической формулы - student2.ru

г) Упрощение логической формулы - student2.ru

Упрощение логической формулы - student2.ru

Упрощенная схема: Упрощение логической формулы - student2.ru

д) Упрощение логической формулы - student2.ru

Упрощение логической формулы - student2.ru (по закону склеивания)

Упрощенная схема: Упрощение логической формулы - student2.ru

е) Упрощение логической формулы - student2.ru

Решение: Упрощение логической формулы - student2.ru

Упрощенная схема: Упрощение логической формулы - student2.ru

Решение логических задач

Разнообразие логических задач очень велико. Способов их решения тоже немало. Но наибольшее распространение получили следующие три способа решения логических задач:

· средствами алгебры логики;

· табличный;

· с помощью рассуждений.

Познакомимся с ними поочередно.

Наши рекомендации