T, - время задержки воспламенения
При плавном запуске воспламенение происходит при небольшом расходе топлива и с последующим сравнительно плавным нарастанием расхода топлива. Плавный запуск характерен для ЖРД малых и средних тяг с турбонасосной системой подачи. При этом плавность нарастания расхода топлива обеспечивается за счет инерции ТНА. Продолжительность запуска определяется в основном временем выхода ТНА на номинальный режим («раскруткой ТНА»).
Ступенчатый запуск характерен введением промежуточной (или предварительной) ступени работы ЖРД и иногда целесообразен при запуске двигателей больших тяг. Необходимость введения промежуточной ступени обусловлена тем, что с ростом тяги, а, следовательно, и мощности ТНА время, расходуемое на раскрутку ТНА (инерционность ТНА) уменьшается. В результате влияние инерционности ТНА на скорость нарастания давления становится ничтожным, так что запуск приходится смягчать введением промежуточного режима.
При запуске ЖРД, работающих на несамовоспламеняющихся компонентах, введение предварительной ступени обеспечивает прогрев камеры и образование надежного факела.
Пушечным называют запуск, при котором сразу подается полный расход топлива. В чистом виде пушечный запуск не применяется, так как при этом получился бы очень большой заброс давления в камере, поэтому в системе подачи или в головке двигателя всегда устанавливаются устройства, смягчающие запуск. Запуски, близкие к пушечному, возможны при использовании вытеснительных систем подачи.
Билет №16
1. Классификация и схемы ЖРД (5.2).
2. Система управления направлением вектора тяги (9.5).
Классификация и схемы ЖРД
Одна из возможных классификаций ЖРД (по способу получения рабочего тела для турбины ТНА) представлена на рис.20.
Рис.20
Условные обозначения к рис.20:
ВСПК - вытеснительная система подачи компонентов, рис.21; 1-ЖРД с газогенератором, работающим на автономном топливе, рис.22;
2-ЖРД с газогенератором, работающим на основных компонентах топлива, рис.23;
3-ЖРД без газогенератора с газификацией охладителя в зарубашечном пространстве, рис.24;
4-ЖРД с двумя газогенераторами, рис.25.
В зависимости от агрегатного состояния компонентов ( «Ж» - жидкость или «Г» - газ), поступающих в камеру сгорания, все конструктивные схемы ЖРДУ можно условно классифицировать на «Ж - Ж», «Ж -Г» или «Г -Г». Необходимо отметить, газификация компонента способствует улучшению энергетических показателей ЖРДУ.
В ЖРД с ВСПК, рис.21, рабочее тело (инертный газ) из газового аккумулятора давления 1 через редукторы 2 направляется в баки окислителя и горючего 3. Далее окислитель поступает в смесительную головку 4 камеры, а горючее в зарубашечное пространство, образованное двойными стенками камеры ЖРД.
Основным преимуществом данной схемы является конструктивная простота (отсутствие ТНА). Однако, для ЖРД работающих по указанной схеме характерны сравнительно невысокие значения тяги и удельного импульса, что
Рис.21
определило ее применение в качестве двигателей ориентации. Кроме того, в связи с нагруженностью баков для компонентов избыточным давлением они выполняются толстостенными, что приводит к существенному ухудшения массовых характеристик ЖРДУ в целом.
Рис.22
В данной конструктивной схеме ЖРДУ, рис.22, в качестве рабочего тела приведения во вращение турбины 1 ТНА используется перекись водорода . поступающая в парогазогенератор 8 и разлагающаяся в нём под действием катализатора перманганата калия КMg04 с образованием парогаза при температуре 600 - 800К. Парогаз направляется на лопатки турбины, обеспечивая вращение насосов 2, 3, 4 и, следовательно, подачу компонентов в камеру сгорания ЖРД - 5. Генераторный газ из турбины выбрасывается через патрубок 6 а сопло 7 за пределы двигателя. В некоторых ЖРД, работающих по указанной схеме, генераторный газ использовался для создания управляющих усилий для ориентации ЛА в пространстве и для создания дополнительной тяги путём его введения в расширяющуюся часть сопла. Данная конструктивная схема ЖРДУ использовалась до 70 годов двадцатого столетия.
Рис23
Особенностью данной конструктивной, рис.23, схемы является более эффективное использование генераторного газа, путём его подачи в смесительную головку камеры через газовод 9. В зависимости от соотношения компонентов (величины коэффициента избытка окислителя - а), подаваемых в газогенератор, он может быть окислительного или восстановительного типа. Давление в полости турбины должно быть выше давления в смесительной головке на величину гидравлического сопротивления газовода.
Конструктивная схема ЖРД, представленная на рис.24, используется, когда в качестве одного из компонентов применяется жидкий водород, который проходя через систему последовательно расположенных насосов (снижение вероятности взрыва при резком повышении давления компонента), направляется в зарубашечное пространство камеры, образованное её двойными стенками, где газифицируется и в дальнейшем поступает на лопатки турбины, приводя во вращение насосы, а затем - через газовод в смесительную головку камеры.
Рис24
Рис25
В данной конструктивной схеме ЖРДУ. рис.25, оба компонента поступают в головку камеры в газообразном состоянии. При этом один из газогенераторов относится к окислительному типу, другой - к восстановительному.
Система управления направлением вектора тяги
Для создания направляющих моментов и усилий
в ЖРД используются следующие мероприятия:
- подвижные элементы, устанавливаемые в газовом потоке, истекающем из сопла;
- камеры, устанавливаемые на шарнирном или карданном подвесе;
- рулевые двигатели;
- поворотные сопла;
- впрыск жидкости или вдув газа в расширяющуюся часть сопла;
- изменение тяги отдельных камер многокамерного двигателя.