Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

С помощью теоремы Гаусса легко рассчитать напряженности полей, создаваемых симметричными распределениями зарядов.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда Гаусс Карл Фридрих (1777–1855) - student2.ru одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А, в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.



Гаусс Карл Фридрих (1777–1855) - student2.ru Гаусс Карл Фридрих (1777–1855) - student2.ru
Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью Гаусс Карл Фридрих (1777–1855) - student2.ru , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток Гаусс Карл Фридрих (1777–1855) - student2.ru вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Сравнивая два последних выражения для потока вектора напряженности, получим

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Гаусс Карл Фридрих (1777–1855) - student2.ru

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины.Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния Гаусс Карл Фридрих (1777–1855) - student2.ru до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины Гаусс Карл Фридрих (1777–1855) - student2.ru . Если линейная плотность заряда на проволоке Гаусс Карл Фридрих (1777–1855) - student2.ru , то заряд выделенного участка равен Гаусс Карл Фридрих (1777–1855) - student2.ru .

Гаусс Карл Фридрих (1777–1855) - student2.ru

Из соображений симметрии электрическое поле проволоки можно изобразить расходящимися линиями напряженности (рис. 1.21). Окружим выделенный участок проволоки цилиндрической поверхностью радиусом Гаусс Карл Фридрих (1777–1855) - student2.ru так, чтобы ось цилиндра совпадала с осью проволоки. При этом весь поток вектора напряженности будет выходить через боковую поверхность цилиндра, а поток через оба основания цилиндра равен нулю. Площадь боковой поверхности равна Гаусс Карл Фридрих (1777–1855) - student2.ru , вектор напряженности параллелен вектору нормали во всех точках боковой поверхности и постоянен по модулю, поэтому поток вектора напряженности через боковую поверхность:

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Откуда для напряженности электрического поля получаем выражение:

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Таким образом, напряженность электрического поля тонкой равномерно заряженной бесконечно длинной прямой проволоки обратно пропорциональна расстоянию от нее.

Гаусс Карл Фридрих (1777–1855) - student2.ru

Напряженность электростатического поля равномерно заряженной сферической поверхности.Определим зависимость напряженности электростатического поля равномерно заряженной сферической поверхности радиусом Гаусс Карл Фридрих (1777–1855) - student2.ru от расстояния Гаусс Карл Фридрих (1777–1855) - student2.ru до центра сферы, используя теорему Гаусса. Заряд на сфере равен Гаусс Карл Фридрих (1777–1855) - student2.ru . Из симметрии распределения заряда на сфере ясно, что линии напряженности электрического поля, создаваемого сферой, расходятся радиально (рис. 1.22). Окружим заряженную сферу сферической поверхностью радиусом Гаусс Карл Фридрих (1777–1855) - student2.ru с центром, совпадающим с центром заряженной сферы. Тогда в силу равноудаленности всех точек этой поверхности от поверхности заряженной сферы модуль напряженности поля будет постоянным, а угол между вектором напряженности и вектором нормали к поверхности равен нулю, так как оба направлены по радиусу сферы.

Поток вектора напряженности через выбранную сферическую поверхность равен Гаусс Карл Фридрих (1777–1855) - student2.ru . На основании теоремы Гаусса получим:

Гаусс Карл Фридрих (1777–1855) - student2.ru ,

откуда

Гаусс Карл Фридрих (1777–1855) - student2.ru .

Следовательно, электростатическое поле вне равномерно заряженной сферы не отличается от поля точечного заряда, если заряд сферы поместить в ее центре.

Поскольку внутри сферы заряд отсутствует, то напряженность поля внутри сферы равна нулю.

Наши рекомендации