Равновесие зарядов на приводнике. основная задача электростатики проводников. эквипотенциальные поверхности и силовые линии электростатического поля между проводниками
Очень часто на практике приходится встречаться с ситуациями, в которых распределение зарядов неизвестно, но заданы потенциалы проводников, их форма и относительное расположение. И требуется определить потенциал в любой точке между проводниками. Это основная задача электростатика проводников. Теорема единственности говорит о том, что эта задача имеет единственное решение. Из этой теоремы следует также, что заряд на поверхности проводника тоже распределяется единственным способом.
В проводниках электрические заряды могут свободно перемещаться под действием поля. Силы, действующие на свободные электроны металлического проводника, помещенного во внешнее электростатическое поле, пропорциональны напряженности этого поля. Поэтому под действием внешнего поля заряды в проводнике перераспределяются так, чтобы напряженность поля в любой точке внутри проводника была равна нулю.
На поверхности заряженного проводника вектор напряженности должен быть направлен по нормали к этой поверхности, иначе под действием составляющей вектора , касательной к поверхности проводника, заряды перемещались бы по проводнику. Это противоречит их статическому распределению. Таким образом:
1. Во всех точках внутри проводника , а во всех точках его поверхности , .
2. Весь объем проводника, находящегося в электростатическом поле, является эквипотенциальным, в любой точке внутри проводника:
и .
Поверхность проводника также эквипотенциальна, так как для любой линии поверхности
3. В заряженном проводнике нескомпенсированные заряды располагаются только на поверхности проводника. Действительно, проведем внутри проводника произвольную замкнутую поверхность , ограничивающую некоторый внутренний объем проводника (рис.1.3.1). Тогда согласно теореме Гаусса суммарный заряд этого объема равен: , так как в точках поверхности , находящихся внутри проводника, поля нет.
Определим напряженность поля заряженного проводника. Для этого выделим на его поверхности произвольную малую площадку и построим на ней цилиндр высоты с образующей, перпендикулярной к площадке , с основаниями и , параллельными . На поверхности проводника и вблизи нее векторы и перпендикулярны к этой поверхности, и поток вектора сквозь боковую поверхность цилиндра равен нулю. Поток электрического смещения сквозь также равен нулю, так как она лежит внутри проводника, и во всех ее точках .
Поток смещения сквозь всю замкнутую поверхность цилиндра равен потоку сквозь верхнее основание :
По теореме Гаусса этот поток равен сумме зарядов , охватываемых поверхностью: ,где - поверхностная плотность зарядов на элементе поверхности проводника. Тогда , и , так как .
Таким образом, если электростатическое поле создается заряженным проводником, то напряженность этого поля на поверхности проводника прямо пропорциональна поверхностной плотности зарядов, находящихся в нем.
Исследования распределения зарядов на проводниках различной формы, находящихся в однородном диэлектрике вдали от других тел показали, что распределение зарядов во внешней поверхности проводника зависит только от ее формы: чем больше кривизна поверхности, тем больше плотность зарядов ; на внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют и .
Большая величина напряженности поля вблизи острого выступа на заряженном проводнике приводит к электрическому ветру. В сильном электрическом поле около острия положительные ионы, имеющиеся в воздухе, движутся с большой скоростью, сталкиваясь с молекулами воздуха и ионизируя их. Возникает все большее число движущихся ионов, образующих электрический ветер. Вследствие сильной ионизации воздуха около острия оно быстро теряет электрический заряд. Поэтому для сохранения заряда на проводниках стремятся, чтобы поверхности их не имели острых выступов.