Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля. Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды. Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Силовой характеристикой электрического поля служит напряженность E. Если на находящийся в некоторой точке заряд q0 действует сила F, то напряженность электрического поля Е равна: Е=F/q0. Графически силовые поля изображают силовыми линиями. Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.

Если на заряд действуют одновременно несколько электрических полей, то напряженность поля равна векторной сумме напряженностей всех полей (принцип суперпозиции):

Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого - student2.ru

Электрическое поле точечного заряда

Рассмотрим поле точечного заряда. Напряженность этого поля в любой точке равна Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого - student2.ru Согласно закону Кулона Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого - student2.ru Следовательно, напряженность поля точечного заряда Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого - student2.ru

Потенциал.

Разность потенциалов. Кроме напряженности, важной характеристикой электрического поля является потенциал j. Потенциал j - это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

j=Wпот/q, Здесь Wпот – потенциальная энергия заряда q в данной точке поля. Потенциал поля, созданного точечным зарядом - источником q или заряженным шаром с зарядом q, определяется формулой j=q/4pe0er. Здесь r –расстояние от точки поля с потенциалом j до точечного заряда или до центра шара. Если r=R, где R – радиус шара, то по этой формуле можно определить потенциал шара на его поверхности. Работа перемещения заряда А в электрическом поле определяется выражением A=q(j1-j2) или А=qU. Здесь j1-j2 разность потенциалов (или падение потенциала Dj, или напряжение U) между точками с потенциалами, j1 и j2. Очевидно, что если заряд перемещают между точками с одинаковыми потенциалом, то работа перемещения заряда равна нулю. Точно так же как равна нулю и работа перемещения заряда по замкнутой траектории, т.е. когда он возвращается в исходную точку с прежним потенциалом. Действительно в этом случае А=q(j1-j2)=0. в однородном электростатическом поле работа перемещения заряда q может быть определена по формуле A=Eqd, (d=Scosa), где E – напряженность этого поля, а d – проекция перемещения заряда q на силовую линию этого поля, угол между направлением перемещения S и вектором Е. Если заряд перемещается по силовой линии, то d – модуль перемещения. Если заряд перемещается перпендикулярно силовым линиям, тоa =900, соsa =0и А=0. В каждой точке однородного электрического поля напряженность одинакова по величине и направлению, а потенциал нет, так как он понижается при переходе от точек, которые ближе к положительным зарядам – источникам, к точкам, которые ближе к отрицательным зарядам источникам. В этом случае связь между разностью потенциалов j1-j2 или U и напряженностью Е выражает простое соответствие E=(j1-j2)/d или E=U/d. Следует отметить, что в электрическом поле можно отыскать точки, потенциалы которых одинаковы. Эти точки располагаются на поверхностях, перпендикулярных линиям вектора E. Такие поверхности называются эквипотенциальными. Работа перемещения заряда q вдоль эквипотенциальной поверхности равна нулю, так как A = q(j1-j2)=0. Поверхность проводника с неподвижными зарядами тоже является эквипотенциальной, поэтому при перемещении заряда по такому проводнику работы не совершается. Формулу E=(j1-j2)/d можно применять к полю бесконечной заряженной плоскости и к полю плоского конденсатора, обкладки которого заряжены разноименно (при этом если j1-j2 – разность потенциалов между обкладками, то d – расстояние между ними).

Диполь

Представляет собой совокупность равных по модулю и разноименных зарядов, находящихся на малом расстоянии друг от друга. При наложении внешнего электрического поля диполи ориентируются таким образом, что поле, создаваемое поляризованным зарядом, направлено в сторону, противоположную внешнему электрическому полю. Напряженность электрического поля в диэлектрике равна разности напряжений внешнего поля Е0 и поля создаваемого поляризованным зарядом Eп: Е=Ео – Еп. В неполярных диэлектриках в отсутствие внешнего поля молекулы не являются диполями, так как центры положительных и отрицательных зарядов совпадают. При наложении внешнего электрического поля молекулы растягиваются и становятся диполями, при этом поле поляризованного заряда направлено против внешнего поля. Независимо от природы диэлектрика напряженность внешнего поля в нем всегда ослаблена в e раз: e = Ео/Е. Относительная диэлектрическая проницаемость e показывает, во сколько раз напряженность электрического поля в диэлектрики меньше, чем в вакууме.

Диполь

(от ди... и греч. pólos - полюс) электрический, совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга. Основной характеристикой электрического Д. является его дипольный момент - вектор, направленный от отрицательного заряда к положительному (рис. 1) и численно равный произведению заряда е на расстояние l между зарядами:р = el. Дипольный момент определяет электрическое поле Д. на большом расстоянии R от Д. (R"l), а также воздействие на Д. внешнего электрического поля.

Вдали от Д. его электрическое поле Е убывает с расстоянием как 1/R3, т. е. быстрее, чем поле точечного заряда (~ 1/R2). Компоненты напряжённости поля Е вдоль оси Д. (Ep) и в направлении, перпендикулярном к р (E), пропорциональны дипольному моменту и в системе единиц СГС (Гаусса) равны:

Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого - student2.ru

где J - угол между р и радиусом-вектором R точки пространства, в которой измеряется поле Д.; полная напряжённость

Напряженность электрического поля. Заряды, находясь на некотором расстоянии один от другого - student2.ru

Т. о., на оси Д. при J = 0 напряжённость поля вдвое больше, чем при J = 90°; при обоих этих углах оно имеет только компоненту Ep, причём при J = 0 её направление параллельно р, а при J = 90° - антипараллельно (рис. 2).

Действие внешнего электрического поля на Д. также пропорционально величине его дипольного момента. Однородное поле создаёт вращающий момент М = pE sina (a - угол между вектором напряжённости внешнего электрического поля Е и дипольным моментом р; рис. 3), стремящийся повернуть Д. так, чтобы его дипольный момент был направлен по полю. В неоднородном электрическом поле на Д., кроме вращающего момента, действует также сила, стремящаяся втянуть Д. в область более сильного поля (рис. 4).

Электрическое поле любой нейтральной в целом системы на расстояниях, значительно больших её размеров, приближённо совпадает с полем эквивалентного Д. - электрического Д. с таким же дипольным моментом, как и у системы зарядов (т. е. поле на больших расстояниях от системы нечувствительно к деталям распределения зарядов). Поэтому во многих случаях электрический Д. является хорошим приближением для описания такой системы на больших по сравнению с её размерами расстояниях. Например, молекулы многих веществ можно приближённо рассматривать как электрический Д. (в простейшем случае это молекулы из двух ионов с зарядами противоположных знаков); атомы и молекулы во внешнем электрическом поле, несколько раздвигающем их положительные и отрицательные заряды, приобретают индуцированный (наведённый полем) дипольный момент и становятся микроскопическими Д. (см., например, Диэлектрики).

Электрический Д. с изменяющимся во времени дипольным моментом (вследствие изменения его длины l или зарядов e) является источником электромагнитного излучения (см. Герца вибратор).

Д. магнитный. Исследование взаимодействий полюсов постоянных магнитов (Ш. Кулон, 1785) привело к представлению о существовании магнитных зарядов, аналогичных электрическим. Пара таких магнитных зарядов, равных по величине и противоположных по знаку, рассматривалась как магнитный Д. (обладающий магнитным дипольным моментом). Позднее было установлено, что магнитных зарядов не существует и что магнитные поля создаются движущимися электрическими зарядами, т. е. электрическими токами (см. Ампера теорема). Однако понятие о магнитном дипольном моменте оказалось целесообразным сохранить, поскольку на больших расстояниях от замкнутых проводников, по которым протекают токи, магнитные поля оказываются такими же, как если бы их порождали магнитные Д. (магнитное поле Д. магнитного на больших расстояниях от Д. рассчитывается по тем же формулам, что и электрическое поле Д. электрического, причём электрический момент диполя нужно заменить магнитным моментом тока). Магнитный момент системы токов определяется силой и распределением токов. В простейшем случае тока I, текущего по круговому контуру (витку) радиуса а, магнитный момент в системе СГС равен р = ISn/c, где S = pа2 - площадь витка, а единичный вектор n, проведённый из центра витка, направлен так, что с его конца ток виден текущим против часовой стрелки (рис. 5), с - скорость света.

Аналогию между магнитным Д. и витком с током можно проследить и при рассмотрении действия магнитного поля на ток. В однородном магнитном поле на виток с током действует момент сил, стремящийся ориентировать виток так, чтобы его магнитный момент был направлен по полю; в неоднородном магнитном поле такие замкнутые токи ("магнитные Д.") втягиваются в область с большей напряжённостью поля. На взаимодействии неоднородного магнитного поля с магнитным Д. основано, например, разделение частиц с различными магнитными моментами - ядер, атомов или молекул (магнитные моменты которых обусловлены движением входящих в их состав заряженных элементарных частиц, а также магнитными моментами, связанными со спинами частиц). Пучок частиц, проходя через неоднородное магнитное поле, разделяется, т.к. поле сильнее изменяет траектории частиц с большим магнитным моментом.

Однако аналогия между магнитным Д. и витком с током (теорема эквивалентности) не является полной. Так, например, в центре кругового витка напряжённость магнитного поля не только не равна напряжённости поля "эквивалентного" Д., но даже противоположна ей по направлению (рис. 6). Магнитные силовые линии (в отличие от электрических силовых линий, которые начинаются и кончаются на зарядах) являются замкнутыми.

4. Поляризация диэлектриков
(диэлектрик, какие бывают, как поляризуются)

Наши рекомендации