Основные схемы выпрямления переменного тока
Одним из главных применений полупроводниковых диодов является выпрямление переменного тока. Выпрямитель служит для преобразования переменного напряжения в постоянное. Выпрямленное напряжение еще содержит переменные составляющие, которые называются пульсациями. От пульсаций избавляются с помощью сглаживающих фильтров.
Для обеспечения неизменной величины выходного напряжения используется стабилизатор напряжения. Стабилизатор напряжения удерживает выходное напряжение на постоянном уровне.
Основными параметрами, характеризующими выпрямители, являются: номинальное среднее выпрямленное напряжение U0 , номинальный средний выпрямленный ток I0 и коэффициент пульсаций выпрямленного напряжения kn.
Коэффициентом пульсаций kn называется отношение амплитуды первой гармоники выпрямленного напряжения к среднему значению выпрямленного напряжения.
Основными параметрами, характеризующими диоды в выпрямителях, являются: среднее значение прямого тока, максимальное значение обратного напряжения и рассеиваемая мощность.
Трансформаторы, работающие в выпрямителях, характеризуются действующими значениями токов и напряжений первичной и вторичной обмоток и номинальной мощностью.
Наиболее распространены три основные схемы выпрямителей: однополупериодная, двухполупериодная и мостовая.
Схема однополупериодного выпрямителя изображена на (рис. 12.1), где Т - трансформатор, VD - полупроводниковый диод, a R - нагрузка.
Рис. 12.1
Когда на верхнюю часть вторичной обмотки подан положительный полупериод переменного тока, на диод подается прямое напряжение, и он пропускает его, а когда отрицательный, то диод заперт. Через нагрузку протекает пульсирующий прерывистый ток (рис. 12.2).
Сопротивление Rд диода непостоянно: оно определяется крутизной вольтамперной характеристики в каждой точке. Однако при включении последовательно с диодом нагрузки RH, сопротивление этой цели становится равным RД + RH , и характеристику можно считать линейной (динамическая характеристика).
Рис. 12.2
Среднее за период значение тока, выпрямленного однополупериодным выпрямителем
I0=Im/ π (12.1)
где Im ~ амплитуда тока, а среднее постоянное напряжение на нагрузке
U0 = I0RH =Um/π -I0Rд (12.2)
Без нагрузки (I0 = 0) напряжение на зажимах выпрямителя будет равно среднему за период значению положительной волны синусоиды:
U0=Um/ π =0.318Um=0.45U (12.3)
где U - действующее значение переменного напряжения. При увеличении тока нагрузки напряжение на ней уменьшается на величину падения напряжения на диоде (I0Rд ).
Во время отрицательного полупериода, когда диод закрыт, он находится под напряжением вторичной обмотки трансформатора, поэтому наибольшее обратное напряжение, действующее на диод,
(12,4)
Мы видим, что обратное напряжение на диоде более чем в 3 раза превышает выпрямленное напряжение на нагрузке.
Однополупериодная схема очень редко используется в современных выпрямителях, поскольку вторичная обмотка трансформатора работает только половину периода, и поэтому габаритная мощность трансформатора должна превышать мощность выпрямленного тока примерно в 3 раза. Кроме того, выпрямленное напряжение имеет очень высокий коэффициент пульсаций, что затрудняет его сглаживание.
На (рис. 12.3) изображена двухполупериодная схема, где Т - трансформатор с отводом от середины вторичной обмотки, VD1 и VD2 - полупроводниковые диоды, a R - нагрузка.
Рис. 12.3
Эту схему можно рассматривать как две самостоятельные однополупериодные схемы, имеющие общую нагрузку. В ней диоды VD1 и VD2 оказываются открытыми в разные половины периода переменного напряжения, и поэтому ток через нагрузку R протекает в обе половины периода, пульсируя с двойной частотой (рис. 12.4).
Рис. 12.4
Каждый диод здесь работает как в однополупериодной схеме. Токи диодов складываются, поэтому постоянные составляющие тока и напряжения
(12.5)
(12.6)
Из выражения (12.6) следует, что в отсутствие нагрузки напряжение на выходе двухполупериодного выпрямителя вдвое больше напряжения на выходе однополупериодного выпрямителя.
В двухполупериодной схеме максимальное обратное напряжение, действующее на каждый диод, находящийся в закрытом состоянии, равно сумме амплитуд напряжений обеих половин вторичной обмотки:
(12.7)
Ток, протекающий через каждый диод, равен:
т. е. по сравнению с однополупериодной в двухполупериодной схеме через каждый диод протекает вдвое меньший ток. Коэффициент пульсаций в двухполупериодной схеме значительно ниже.
Двухполупериодная схема довольно часто используется на практике. Ее недостатками являются: необходимость отвода от середины вторичной обмотки трансформатора и неполное использование вторичной обмотки трансформатора по напряжению. Эти недостатки устранены в мостовой схеме.
Мостовая схема выпрямления изображена на (рис. 12.5) и состоит из трансформатора Т и четырех диодов: VD1 - VD4.
Рис. 12.5
Диагональ AВ моста подключена к вторичной обмотке трансформатора, а диагональ CD - к нагрузке. Полярность напряжения на вторичной обмотке
изменяется каждую половину периода, в результате чего при более высоком потенциале точки А (+) по сравнению с потенциалом точки В (-) ток проходит в течение полупериода A —>VD1—>С —>R —> D —> VD3 —>B—>A, а в следующий полупериод по пути В—> VD2 —> С—>R—>D —> VD4 —>A —> R
Таким образом, выпрямленный ток идет через нагрузку R в течение всего периода переменного тока, поэтому мостовая схема является двухполупериодной.
В мостовой схеме выпрямленный ток и напряжение имеют такую же форму, как и в двухполупериодной схеме со средней точкой, поэтому согласно (12.5) значение выпрямленного тока
а выпрямленного напряжения согласно (12.6):
Без нагрузки (I0 - 0) напряжение на зажимах выпрямителя
Особенностью мостовой схемы является отсутствие во вторичной обмотке трансформатора отвода от ее середины, поэтому для получения одного и того же значения выпрямленного напряжения по сравнению со схемой с отводом от середины вторичной обмотки в мостовой схеме требуется обмотка с вдвое меньшим числом витков. Вследствие этого обратное напряжение, действующее на каждый диод, в два раза меньше, чем в схеме с отводом от середины вторичной обмотки:
( 12.9)
Действующее значение тока, протекающего через Диод,
В мостовой схеме ток через каждый диод идет только в течение одногополупериода, тогда как через вторичную обмотке трансформатора - в течение всего периода. Действующее значение тока, протекающего через вторичную обмотку,
(12.10)
Частота пульсаций и коэффициент пульсаций выпрямленного напряжения в мостовой схеме такие же, как и в схеме с отводом от середины вторичной обмотки.
Рассмотрим теперь трехфазные схемы выпрямления. Простейшая трехфазная схема выпрямления тока с нейтральной точкой изображена на (рис. 12.6а).
А
Б
Рис. 12.6
В этой схеме первичные обмотки трехфазного трансформатора соединяются звездой или треугольником, а вторичные - звездой, причем в каждую вторичную обмотку включено по диоду. В этом случае в каждый момент, выпрямленный ток проходит только через тот диод, анод которого соединен с зажимом обмотки, имеющим наибольший положительный потенциал по отношению к нейтральной точке трансформатора. Поэтому выпрямленное напряжение будет изменяться по кривой, являющейся огибающей положительных полуволн фазных напряжений вторичных обмоток трансформатора (рис. 12.6) Переключение диодов происходит в моменты, соответствующие пересечению положительных полусинусоид напряжения. В нагрузке Е„ токи, походящие через три диода, суммируются.
Среднее значение выпрямленного напряжения в этой схеме
(12.11)
а среднее за период значение выпрямленного тока, проходящего через каждый диод,
(12.12)
Обратное напряжение, действующее на каждый диод, равно амплитуде линейного напряжения, действующего в системе вторичных обмоток трансформатора, соединенных звездой, поскольку диоды подключены анодами к каждой из фаз, а катодами к другой фазе через открытый диод:
Существенным недостатком этой схемы является то, что проходящие только через вторичные обмотки токи одного направления (выпрямленный ток) создают во взаимно связанных стержнях трехфазного трансформатора дополнительный постоянный магнитный поток. Чтобы не допустить насыщения магнитной системы за счет этого дополнительного потока, приходится увеличивать сечение стержней и габариты трансформатора. Трехфазную схему выпрямления с нейтральной точкой применяют только в маломощных силовых установках.
Мостовая трехфазная схема выпрямления переменного тока изображена на (рис. 12.7). В ней сочетаются принципы мостовой схемы и схемы многофазного выпрямления. В этой схеме нулевая точка трансформатора для выпрямления не нужна и поэтому первичные и вторичные обмотки могут быть соединены как звездой, так и треугольником.
Рис. 12.7
Шесть диодов образуют две группы - нечетную VD1 , VD3, и VD5 и четную VD2 , VD4 и VD6 . У нечетной группы катоды соединены вместе и служат точкой вывода выпрямителя с положительным потенциалом, а у четной группы - аноды соединены вместе и служат точкой вывода с отрицательным потенциалом. При работе этой схемы выпрямляются обе полуволны переменных напряжений всех вторичных обмоток трансформатора, благодаря чему пульсации выпрямленного напряжения значительно уменьшаются. В схеме на (рис. 12.7) в каждый момент работает тот диод нечетной группы, у которого анод в этот момент имеет наибольший положительный потенциал, а вместе с ним тот диод четной группы, у которого катод имеет наибольший по абсолютной величине отрицательный потенциал. Выпрямленное напряжение будет изменяться по огибающей с двойной частотой пульсаций (рис. 12.8).
Рис. 12.8
Среднее значение выпрямленного напряжения в этой схеме
(12.13)
Средний ток через диод Iд = I0 / 3 , причем этот ток проходит через два последовательно включенных диода. Обратное напряжение, действующее на каждый диод, здесь также равно амплитудному значению линейного напряжения:
(12.14)
В мощных выпрямителях в основном используется мостовая трехфазная схема. Она получила широкое применение в управляемых выпрямителях, в которых, регулируя моменты открывания и закрывания диодов (тиристоров), можно в широких пределах регулировать среднее значение выпрямленного тока.
Сглаживающие фильтры
Рассмотренные схемы выпрямления переменного тока позволяют получать выпрямленное, но пульсирующее напряжение. Для питания электронных приборов пульсирующее напряжение непригодно: оно создает фон переменного тока, вызывает искажения сигналов и приводит к неустойчивой работе приборов. Для устранения пульсаций (сглаживания) применяют сглаживающие фильтры.
Сглаживающий фильтр состоит из реактивных элементов: конденсаторов и катушек индуктивности (дросселей). Сущность работы сглаживающего фильтра состоит в разделении пульсирующего тока i(t) на постоянную I0 и переменную i= составляющие (рис. 12.9). Постоянная составляющая направляется в нагрузку, а нежелательная переменная замыкается через конденсатор, минуя нагрузку.
Рис. 12.9
Физическая сущность работы в фильтре конденсатора и дросселя состоит в том, что конденсатор (обычно большой емкости), подключенный параллельно нагрузке, заряжается при нарастании импульсов выпрямленного напряжения и разряжается при их убывании, сглаживая тем самым его пульсации. Дроссель, наоборот, при нарастании импульсов выпрямленного тока в результате действия ЭДС самоиндукции задерживает рост тока, а при убывании импульсов задерживает его убывание, сглаживая пульсации тока в цепи нагрузки. С другой стороны, конденсатор и дроссель можно рассматривать как некие резервуары энергии. Они запасают ее, когда ток в цепи нагрузки превышает среднее значение, и отдают, когда ток стремится уменьшиться ниже среднего значения. Это и приводит к сглаживанию пульсаций. Рассмотрим несколько подробнее емкостной фильтр, в котором на выходе двухполупериодного выпрямителя параллельно нагрузке R включен конденсатор С (рис. 12.10).
Рис. 12.10
При возрастании выпрямленного напряжения (при открытом диоде VD1) конденсатор зарядится (рис. 12.11, а), а при убывании выпрямленного напряжения полярность напряжения на диоде изменится на противоположную, и диод закроется, отключив вторичную обмотку трансформатора от нагрузки. Ток через диод будет иметь форму короткого импульса (рис. 12.11, б).
Когда входной сигнал начинает падать в отрицательном направлении, конденсатор разряжается через нагрузку. Скорость разряда конденсатора зависит от постоянной времени RC, а, следовательно, от сопротивления нагрузки. Постоянная времени разряда велика по сравнению с периодом переменного тока. Следовательно, период заканчивается раньше, чем конденсатор может разрядиться. Поэтому после первой четверти периода ток через нагрузку поддерживается разряжающимся конденсатором. Как только конденсатор начинает разряжаться, напряжение на нем уменьшается. Однако до того как конденсатор полностью разрядится, начнется следующий период синусоиды. На аноде диода опять появится положительный потенциал, что позволит ему проводить ток. Конденсатор зарядится снова, и цикл повторится. В результате пульсации напряжения сгладятся, и выходное напряжение фактически повысится.
Рис. 12.11
Чем больше емкость конденсатора, тем больше постоянная времени RC. Это приводит к более медленному разряду конденсатора, что повышает выходное напряжение. Наличие конденсатора позволяет диоду в цепи проводить ток в течение короткого периода времени. Когда диод не проводит, конденсатор обеспечивает нагрузку током. Если нагрузка
потребляет большой ток, то должен использоваться конденсатор большой емкости.
Целью фильтрующего конденсатора является сглаживание пульсаций постоянного напряжения выпрямителя. Качество работы фильтра определяется величиной пульсаций, остающихся в постоянном напряжении. Величину пульсаций можно уменьшить путем использования конденсатора большей емкости или путем увеличения сопротивления нагрузки. Обычно сопротивление нагрузки определяется при расчете цепи. Следовательно, емкость фильтрующего конденсатора определяется допустимой величиной пульсаций.
Необходимо отметить, что фильтрующий конденсатор создает дополнительную нагрузку на диоды, используемые в выпрямителе. Конденсатор заряжается до максимального значения напряжения вторичной обмотки и удерживает это значение в течение всего цикла входного напряжения. Когда диод становится смещенным в обратном напряжении, он запирается и максимальное отрицательное напряжение попадает на анод диода. Фильтрующий конденсатор удерживает максимальное положительное напряжение на катоде диода. Следовательно, разность потенциалов на диоде в два раза превышает максимальное значение напряжения вторичной обмотки. Для выпрямителя должен быть выбран диод, выдерживающий такое напряжение.
Максимальное напряжение, которое может выдержать диод, будучи смещенным, в обратном направлении, называется импульсным обратным напряжением диода. Импульсное обратное напряжение диода, выбранного для выпрямителя, должно быть выше, чем удвоенное максимальное напряжение вторичной обмотки. В идеале диод должен работать при 80% номинального значения обратного напряжения для того, чтобы выдержать изменения входного напряжения. Это касается как однополупериодного, так и двухполупериодного выпрямителя. Но это не так для мостового выпрямителя.
К диодам в мостовом выпрямителе никогда не прикладывается напряжение, большее, чем максимальное значение напряжения вторичной обмотки, поскольку в каждом полупериоде работают по два последовательно включенных диода. Возможность использования диодов с более низкими значениями импульсного обратного напряжения является еще одним преимуществом мостового выпрямителя.
Следует отметить, что пиковое значение тока, протекающего через диод, может во много раз превышать ток нагрузки, что опасно для целостности диода. Б реальной цепи ток через диод возрастает не мгновенно и передний фронт импульса тока также закруглен.
Наиболее распространенными сглаживающими фильтрами в выпрямителях электронных приборов являются П-образные LC-фильтры (рис. 12.12, а). В них постоянная составляющая выпрямленного тока, свободно проходящая через дроссель Др. , попадает затем в нагрузку и замыкается через трансформатор. Переменные составляющие, замыкаясь через большие емкости С1 и С2 , в нагрузку не проходят.
При небольших, токах нагрузки успешно работает Г-образный фильтр (рис. 12.12, б), а при малых токах нагрузки в качестве сглаживающего фильтра достаточно включить конденсатор (рис. 12.12, в), что и делается в переносных радиоприемниках и магнитолах. Во многих случаях дроссель заменяют резистором, что несколько снижает качество фильтрации, но зато значительно удешевляет фильтр (рис. 12.12, г, д). В наиболее ответственных случаях сглаживающий фильтр делают многозвенным, состоящим из нескольких П-образных или Г-образных LC или RC фильтров (рис. 12.12, е).
А Б
В Г
Д Е
Рис. 12.12
Стабилизаторы напряжения
Выходное напряжение выпрямителя может изменяться по двум причинам. Во-первых, может изменяться входное напряжение выпрямителя, что приводит к увеличению или уменьшению выходного напряжения. Во-вторых, может изменяться сопротивление нагрузки, что приводит к изменению потребляемого тока.
Многие электрические цепи рассчитаны на работу при определенном напряжении. Изменения напряжения могут влиять на работу цепи. Следовательно, выпрямитель должен обеспечивать выходного напряжение постоянной величины независимо от изменения нагрузки или входного напряжения. Для того чтобы этого добиться, после сглаживающего фильтра ставят стабилизатор напряжения.
Существует два основных типа стабилизаторов напряжения: параллельные и последовательные. Их названия определяются методом их соединения с нагрузкой. Параллельный стабилизатор подключается к нагрузке параллельно. Последовательный стабилизатор подсоединяется к нагрузке последовательно. Последовательные стабилизаторы более популярны, чем параллельные, так как они более эффективны и рассеивают меньшую мощность. Последовательный стабилизатор также работает в качестве управляющего устройства, защищая источник питания от короткого замыкания в нагрузке.
Рис. 12.13
На (рис. 12.13) показана простая регулирующая цепь на основе стабилитрона. Это параллельный стабилизатор. Стабилитрон соединен последовательно с резистором. Входное постоянное напряжение прикладывается к стабилитрону и резистору и смещает стабилитрон в обратном направлении. Резистор позволяет протекать малому току и поддерживать стабилитрон в области пробоя. Входное напряжение должно быть выше, чем напряжение стабилизации стабилитрона. Падение напряжения на стабилитроне равно напряжению стабилизации стабилитрона. Падение напряжения на резисторе равно разности между входным напряжением и напряжением стабилизации стабилитрона.
Цепь, изображенная на (рис. 12.13), обеспечивает постоянное выходное напряжение при изменениях входного напряжения. Любое изменение напряжения проявляется в виде изменения падения напряжения на резисторе. Сумма падений напряжения должна равняться входному напряжению. Выходное напряжение может быть увеличено или уменьшено путем замены стабилитрона и последовательно включенного резистора.
Ток через нагрузку определяется сопротивлением нагрузки и выходным напряжением. Через последовательно включенный резистор течет сумма тока нагрузки и тока стабилитрона. Этот резистор должен быть тщательно подобран таким образом, чтобы ток через стабилитрон удерживал его в области стабилизации .
Когда ток через нагрузку увеличивается, ток через стабилитрон уменьшается, и сумма этих токов поддерживает напряжение постоянным. Это позволяет цепи поддерживать постоянное выходное напряжение при изменениях выходного тока так же, как и при изменениях входного напряжения.
Рис. 12.14
На (рис. 12.14) изображена параллельная регулирующая цепь, использующая транзистор. Заметим, что транзистор VT1 включен параллельно нагрузке. Это защищает стабилизатор в случае короткого замыкания в нагрузке. Существуют более сложные параллельные стабилизаторы, которые используют более одного транзистора.
Для иллюстрации принципа работы последовательного стабилизатора рассмотрим переменный резистор, включенный последовательно с нагрузкой (рис. 12.15). Для поддержания постоянного напряжения на нагрузке сопротивление R2 можно изменять. При увеличении входного напряжения сопротивление R2 увеличивают, чтобы на нем падало излишнее напряжение и напряжение на нагрузке оставалось постоянным
Рис. 12.15
С помощью резистора R2 можно также компенсировать изменения тока нагрузки. При увеличении тока нагрузки падение напряжения на переменном резисторе увеличивается. Это приводит к уменьшению падения напряжения на нагрузке. Если в момент увеличения тока уменьшить сопротивление, то падение напряжения на переменном резисторе останется постоянным. В результате постоянным окажется и выходное напряжение, несмотря на изменения тока нагрузки.
На практике переменный резистор заменяют транзистором. Транзистор включен таким образом, что через него течет ток нагрузки. Путем изменения тока базы можно управлять величиной тока, текущего через транзистор. В схему включают дополнительные элементы, которые позволяют транзистору автоматически компенсировать изменения входного напряжения и тока нагрузки.
Рис. 12.16
На (рис. 12.16) изображен простой последовательный стабилизатор. На его вход подается нестабилизированное постоянное напряжение, а на его выходе получается стабилизированное постоянное напряжение меньшее по величине. Транзистор включен как эмиттерный повторитель, и поэтому здесь отсутствует обращение фазы между базой и эмиттером. Напряжение на эмиттере повторяет напряжение на базе. Нагрузка подключена между эмиттером транзистора и землей. Напряжение на базе транзистора устанавливается с помощью стабилитрона. Следовательно, выходное напряжение равно напряжению стабилизации стабилитрона минус 0,7 В падения напряжения на переходе база-эмиттер.
Когда входное напряжение на транзисторе увеличивается, выходное напряжение также пытается увеличиться. Напряжение на базе транзистора установлено с помощью стабилитрона. Если на эмиттере появляется больший положительный потенциал, чем на базе, проводимость транзистора уменьшается. Когда транзистор уменьшает свою проводимость, это действует так же, как установка между входом и выходом большого резистора. Большая часть добавившегося входного напряжения падает на транзисторе, и только малая его часть увеличит выходное напряжение.
В последние годы вместо стабилизаторов на дискретных компонентах все чаще используют стабилизаторы на интегральных микросхемах.
Современные стабилизаторы на интегральных микросхемах дешевы и просты в применении. Большинство стабилизаторов на интегральных микросхемах имеют только три вывода (вход, выход и земля) и могут быть подсоединены непосредственно к выходу фильтра выпрямителя. Стабилизаторы на интегральных микросхемах обеспечивают широкий диапазон выходных напряжений как положительной, так и отрицательной полярности. Существуют также двухполярные стабилизаторы напряжения. Если стабилизатора с нужным напряжением нет среди стандартных микросхем, можно использовать микросхему стабилизатора с регулируемым напряжением.
При выборе микросхемы стабилизатора необходимо знать напряжение и ток нагрузки, а также электрические характеристики нестабилизированного блока питания.
12.4. Типы усилителей на транзисторах
Усилители - это электронные цепи, которые используются для увеличения амплитуды электронного сигнала. Цепь, рассчитанная на преобразование низкого напряжения в высокое, называется усилителем напряжения. Цепь, рассчитанная на преобразование слабого тока в сильный, называется усилителем тока. В современной радиоэлектронике основными усилительными устройствами являются транзисторы.
Для того чтобы транзистор обеспечивал усиление, он должен быть в состоянии принять входной сигнал и выдать выходной сигнал, значительно больший, чем входной.
Входной сигнал управляет током, текущим через транзистор. Этот ток в свою очередь управляет напряжением на нагрузке. Транзисторная цепь рассчитана таким образом, чтобы брать напряжение от внешнего источника питания и подавать его на резистор нагрузки в виде выходного напряжения.
Существует несколько способов включения транзистора в цепь: схема с общей базой, схема с общим, эмиттером и. схема с общим коллектором. В каждой из этих схем один из выводов транзистора служит общей точкой, а два других являются входом и выходом, при этом на переход эмиттер-база подается напряжение смещения в прямом направлении, а на переход коллектор-база - в обратном. Каждая схема имеет преимущества и недостатки и может быть собрана как c p-n-р, так и с n-p-п транзистором.
В схеме с общей базой (рис. 12.17) входной сигнал подается в цепь эмиттер-база, а выходной снимается с цепи коллектор-база. База является общим элементом для входа и выхода.
Рис. 12.17
В схеме с общим эмиттером (рис. 12.18) входной сигнал подается в цепь эмиттер-база, а выходной сигнал снимается с цепи коллектор-эмиттер. Эмиттер является общим для входа и выхода. Этот способ включения транзистора используется наиболее широко.
Рис. 12.18
Третий тип соединения (рис. 12.19) - это схема с общим коллектором. В этой схеме входной сигнал подается в цепь база-коллектор, а выходной сигнал снимается с цепи эмиттер-коллектор. Здесь коллектор является общим для входа и выхода. Эта схема используется для согласования импедансов (импедансом называется полное сопротивление цепи переменному току).
Рис. 12.19
В таблице (12.1) приведены входные и выходные сопротивления, а также величина усиления по напряжению, току и мощности для трех схем включения транзистора.
Таблица 12.1
Тип цели | Входное сопротивление | Выходное сопротивление | Усилие по напряжению | Усилие по току | Усилие по мощности |
Общая база | Десятки Ом | Сотни килом – единицы МОм | Несколько сотен | Меньше единицы | Несколько сотен |
Общий эмиттер | Тысячи Ом | Десятки – сотни кОм | Несколько десятков | Несколько сотен | Несколько тысяч |
Общий коллектор | Десятки – сотни кОм | Десятки – сотни Ом | Меньше единицы | Несколько сотен | Несколько десятков |
Отметим, что схема с общим эмиттером изменяет фазу входного сигнала на 180°, тогда как схемы с общей базой и с общим коллектором фазу входного сигнала не изменяют.
Как видно из рис. 12.17-12.19, все три схемы усиления требуют двух источников тока. Переход база-эмиттер должен быть смещен в прямом направлении, а переход база-коллектор должен быть смещен в обратном направлении. Однако оба напряжения смещения могут быть обеспечены с помощью одного источника тока.
Поскольку цепи с общим эмиттером используются наиболее часто, мы их опишем более детально. Те же принципы применимы и к цепям с общей базой и общим коллектором.
На (рис. 12.20) изображен транзисторный усилитель с общим эмиттером, использующий один источник питания. Источник питания обозначен + V. Символ заземления является отрицательным выводом источника питания V . Один источник питания обеспечивает подачу смещения для переходов база-эмиттер и база-коллектор. Два резистора (RБ и RK ) используются для распределения напряжения, обеспечивающего правильную работу. Резистор RK , сопротивление нагрузки коллектора, соединен последовательно с коллектором. Когда через коллектор течет ток, на резисторе RK появляется падение напряжения. Падение напряжения на резисторе RK и падение напряжения на переходе коллектор-эмиттер транзистора в сумме должны равняться приложенному напряжению.
Рис. 12.20
Резистор RБ, соединяющий базу с источником питания, управляет величиной тока базы. Ток базы, текущий через резистор RБ , создает на нем падение напряжения, составляющее большую часть напряжения источника питания. Меньшая часть этого напряжения падает на переходе база-эмиттер транзистора, обеспечивая правильное прямое смещение.
Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения. В случае п-р-п транзистора потенциал на базе и коллекторе транзистора должен быть положительным по отношению к эмиттеру. Следовательно, источник питания может быть связан с базой и коллектором через резисторы RБ иRK . Эту цепь часто называют цепью смещения базы, так как ток базы управляется величиной резистора RБ и напряжением источника питания.
Входной сигнал подключается между базой транзистора и его эмиттером или между выводом входа и землей. Значение входного сигнала либо складывается с прямым смещением на эмиттерном переходе, либо вычитается из него. Это служит причиной изменения коллекторного тока, что в свою очередь приводит к изменению падения напряжения на резисторе RK . Выходной сигнал появляется между выводом выхода и землей.
Цепь, изображенная на рис. 12.20, не обладает хорошей стабильностью, так как она не может компенсировать изменения тока смещения при отсутствии сигнала. Изменения температуры приводят к изменению внутреннего сопротивления транзистора, что заставляет изменяться ток смещения. Это сдвигает рабочую точку транзистора, уменьшая его усиление. Этот процесс называется температурной нестабильностью.
Существует возможность компенсации температурных изменений в схеме транзисторного усилителя. Если часть нежелательного выходного сигнала подать на вход цепи, этот сигнал будет противодействовать изменениям в транзисторе. Этот процесс называется отрицательной обратной связью (рис. 12.21).
Рис. 12.21
В цепи, использующей отрицательную обратную связь, базовый резистор RБ соединен непосредственно с коллектором транзистора. Если температура увеличивается, то ток коллектора и падение напряжения на резисторе RK тоже увеличиваются. Напряжение коллектор-эмиттер уменьшается, уменьшая также напряжение, приложенное к RБ . Это уменьшает ток базы, что служит причиной уменьшения тока коллектора. Так работает коллекторная цепь обратной связи.
Рис. 12.22
На (рис. 12.22) показан другой тип обратной связи. Эта цепь похожа на цепь, изображенную на (рис. 12.21), за исключением того, что последовательно с выводом эмиттера включен резистор RЭ.Резисторы RБ и RЭ и переход транзистора эмиттер-база соединены последовательно с источником питания V .
Увеличение температуры служит причиной увеличения коллекторного тока. Ток эмиттера также увеличивается, увеличивая падение напряжения на резисторе RЭ и уменьшая падение напряжения на резисторе RБ . Ток базы уменьшается, что уменьшает как ток коллектора, так и ток эмиттера. Поскольку сигнал обратной связи создается на эмиттере транзистора, эта цепь называется цепью эмиттерной обратной связи.
В цепи этого типа имеет место уменьшение общего усиления, поскольку входной сигнал переменного тока появляется как на резисторе Rк, так и на резисторе RЭ и на транзисторе. При подсоединении параллельно резистору RЭ конденсатора СЭ (рис. 12.23), сигнал переменного тока обходит резистор RЭ, так как сопротивление конденсатора переменному току существенно меньше RЭ . Этот конденсатор называют блокировочным конденсатором. Его емкость выбирается таким образом, чтобы выполнялось соотношение 1 / ω Сэ <<RЭ.
Рис. 12.23
Блокировочный конденсатор устраняет любые быстрые изменения напряжения на резисторе RЭ, благодаря тому, что он обладает низким импедансом для переменного тока, удерживает постоянное напряжение на резисторе Rэ неизменным, не мешая работе цепи обратной связи, обеспечиваемой RЭ.
Наибольшую стабильность обеспечивает, цепь обратной связи с делителем напряжется (рис. 12.24). Эта цепь используется наиболее широко. Здесь резистор RБ заменяется двумя резисторами, R1 и R2 . Эти последовательно соединенные резисторы подключены параллельно источнику питания V . Они делят напряжение питания на два напряжения, образуя делитель напряжения.
Рис. 12.24
На резисторе R2 падает меньшее напряжение, чем на резисторе R1 . Напряжение на базе по отношению к земле равно падению напряжения на резисторе R2. Цель дел<