Вывод основных законов электрического тока в классической теории проводимости металлов. Закон Джоуля —Ленца
К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию
(103.3)
При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.
За единицу времени электрон испытывает с узлами решетки в среднем ázñ столкновений:
(103.4)
Если n — концентрация электронов, то в единицу времени происходит пázñ столкновений и решетке передается энергия
(103.5)
которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,
(103.6)
Величина w является удельной тепловой мощностью тока. Коэффициент пропорциональности между w и E2 по (103.2) есть удельная проводимость g; следовательно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).
29. Теплоемкость металлов.Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти, теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна 3/2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, таккак во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.
Теплоёмкость - количество теплоты, поглощаемой телом при нагревании на 1 градус; точнее — отношение количестватеплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению Т. единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной(молярной) Т. Количество теплоты, поглощённой телом при изменении его состояния, зависит не только от начальногои конечного состояний (в частности, от их температуры), но и от способа, которым был осуществлен процессперехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. припостоянном объёме (Cv) и Т. при постоянном давлении (Ср), если в процессе нагревания поддерживаютсяпостоянными соответственно его объём или давление. При нагревании при постоянном давлении частьтеплоты идёт на производство работы расширения тела, а часть на увеличение его внутренней энергии(См. Внутренняя энергия), тогда как при нагревании при постоянном объёме вся теплота расходуется толькона увеличение внутренней энергии; в связи с этим cp всегда больше, чем cv. Для газов (разреженныхнастолько, что их можно считать идеальными) разность мольных Т. равна cp — cv = R, где R — универсальная Газовая постоянная, равная 8,314 дж/(моль․ К), или 1,986 кал/(моль․ град). У жидкостей и твёрдых тел разницамежду Ср и Cv сравнительно мала.
Теоретическое вычисление Т., в частности её зависимости от температуры тела, не может бытьосуществлено с помощью чисто термодинамических методов и требует применения методов статистическойфизики (См. Статистическая физика).Для газов вычисление Т. сводится к вычислению средней энергии теплового движения отдельных молекул. Это движение складывается из поступательного и вращательного движений молекулы как целого и изколебаний атомов внутри молекулы. Согласно классической статистике (то есть статистической физике, основанной на классической механике), на каждую степень свободы поступательного и вращательногодвижений приходится в мольной Т. (Cv) газа величина, равная. R /2; а на каждую колебательную степеньсвободы — R, это правило называется Равнораспределения законом. Частица одноатомного газа обладаетвсего тремя поступательными степенями свободы, соответственно чему его Т. должна составлять 3/2 R [тоесть около 12,5 дж/Кмоль․ К), или 3 кал/(моль․град)], что хорошо согласуется с опытом. Молекуладвухатомного газа обладает тремя поступательными, двумя вращательными и одной колебательнойстепенями свободы, и закон равнораспределения приводит к значению Cv = ½R; между тем опыт показывает, что Т. двухатомного газа (при обычных температурах) составляет всего R Это расхождение теории сэкспериментом связано с тем, что при вычислении Т. необходимо учитывать квантовые эффекты, то естьпользоваться статистикой, основанной на квантовой механике (См. Квантовая механика). Согласно квантовоймеханике, всякая система частиц, совершающих колебания или вращения (в том числе молекула газа), можетобладать лишь определёнными дискретными значениями энергии. Если энергия теплового движения всистеме недостаточна для возбуждения колебаний определённой частоты, то эти колебания не вносят своеговклада в Т. системы (соответствующая степень свободы оказывается «замороженной» — к ней неприменимзакон равнораспределения). Температура Т, при достижении которой закон равнораспределения оказываетсяприменимым к вращательной или колебательной степени свободы, определяется квантово-механическимсоотношением T >> hv/k (v — частота колебаний, h — Планка постоянная, k — Больцмана постоянная). Интервалы между вращательными уровнями энергии двухатомной молекулы (деленные на k) составляютвсего несколько градусов и лишь для такой лёгкой молекулы, как молекула водорода, достигают сотниградусов. Поэтому при обычных температурах вращательная часть Т. двухатомных (а также многоатомных) газов подчиняется закону равнораспределения. Интервалы же между колебательными уровнями энергиидостигают нескольких тысяч градусов и поэтому при обычных температурах закон равнораспределениясовершенно неприменим к колебательной части Т. Вычисление Т. по квантовой статистике приводит к тому, что колебательная Т. быстро убывает при понижении температуры, стремясь к нулю. Этим объясняется тообстоятельство, что уже при обычных температурах колебательная часть Т. практически отсутствует и Т. двухатомного газа равна R вместо ½ R.
При достаточно низких температурах Т. вообще должна вычисляться с помощью квантовой статистики. Как оказывается, Т. убывает с понижением температуры, стремясь к нулю при Т → 0 в согласии с такназываемом принципом Нернста (третьим началом термодинамики (См. Третье начало термодинамики)).
В твёрдых (кристаллических) телах тепловое движение атомов представляет собой малые колебаниявблизи определённых положений равновесия (узлов кристаллической решётки). Каждый атом обладает, такимобразом, тремя колебательными степенями свободы и, согласно закону равнораспределения, мольная Т. твёрдого тела (Т. кристаллической решётки) должна быть равной 3 nR, где n — число атомов в молекуле. Вдействительности, однако, это значение — лишь предел, к которому стремятся Т. твёрдого тела при высокихтемпературах. Он достигается уже при обычных температурах у многих элементов, в том числе металлов (См. Металлы) (n = 1, так называемый Дюлонга и Пти закон) и у некоторых простых соединений [NaCI, MnS (n = 2), PbCl2 (n = 3) и др.]; у сложных соединений этот предел фактически никогда не достигается, т. к. ещё раньшенаступает плавление вещества или его разложение.
Квантовая теория Т. твёрдых тел была развита А. Эйнштейном (1907) и П. Дебаем (См. Дебай) (1912). Она основана на квантовании колебательного движения атомов в кристалле. При низких температурах Т. твёрдого тела оказывается пропорциональной кубу абсолютной температуры (так называемый закон Дебая). Критерием, позволяющим различать высокие и низкие температуры, является сравнение с характерным длякаждого данного вещества параметром — так называемой характеристической, или дебаевской, температуройΘD. Эта величина определяется спектром колебаний атомов в теле и, тем самым, существенно зависит от егокристаллической структуры. Обычно ΘD — величина порядка нескольких сот К, но может достигать (например, у алмаза) и тысяч К (см. Дебая температура).
У металлов определённый вклад в Т. дают также и электроны проводимости. Эта часть Т. может бытьвычислена с помощью квантовой статистики Ферми, которой подчиняются электроны. Электронная Т. металлапропорциональна первой степени абсолютной температуры. Она представляет собой, однако, сравнительномалую величину, её вклад в Т. становится существенным лишь при температурах, близких к абсолютномунулю (порядка нескольких градусов), когда обычная Т., связанная с колебаниями атомов кристаллическойрешётки, представляет собой ещё меньшую величину.
Ниже приводятся значения Т. [ккал/(кг․ град)] некоторых газов, жидкостей и твёрдых тел притемпературе 0 °С и атмосферном давлении (1 ккал = 4,19кдж).
30. Работа выхода электронов из металла Формула работа выхода электронов В металлах имеются электроны проводимости, образующие электронный газ и участвующие в тепловом движении. Так как электроны проводимости удерживаются внутри металла, то, следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Чтобы электрон мог выйти из металла за его пределы, должна быть совершена определенная работа А против этих сил, которая получила название работа выхода электрона из металла. Эта работа, естественно, различна для разных металлов. Потенциальная энергия электрона внутри металла постоянна и равна: Wp = -eφ , где j – потенциал электрического поля внутри металла. При переходе электрона через поверхностный электронный слой потенциальная энергия быстро уменьшается на величину работы выхода и становится вне металла равной нулю. Распределение энергии электрона внутри металла можно представить в виде потенциальной ямы. В рассмотренной выше трактовке работа выхода электрона равна глубине потенциальной ямы, т.е. Aвых = eφ Этот результат соответствует классической электронной теории металлов, в которой предполагается, что скорость электронов в металле подчиняется закону распределения Максвелла и при температуре абсолютного нуля равна нулю. Однако в действительности электроны проводимости подчиняются квантовой статистике Ферми-Дирака, согласно которой при абсолютном нуле скорость электронов и соответственно их энергия отлична от нуля. Максимальное значение энергии, которой обладают электроны при абсолютном нуле, называется энергией Ферми EF . Квантовая теория проводимости металлов, основанная на этой статистике, дает иную трактовку работы выхода. Работа выхода электрона из металла равна разности высоты потенциального барьера eφ и энергии Ферми. Aвых = eφ' - EF где φ' – среднее значение потенциала электрического поля внутри металла. Электроны проводимости в металле находятся в беспорядочном движении. Наиболее быстро движущиеся электроны, обладающие достаточно большей кинетической энергией, могут вырываться из металла в окружающее пространство. При этом они совершают работу как против сил притяжения со стороны избыточного положительного заряда, возникающего в металле в результате их вылета, так и против сил отталкивания со стороны ранее вылетевших электронов, образующих вблизи поверхности проводника электронное “облако”. Между электронным газом, в металле и электронным «облаком” устанавливается динамическое равновесие. Работу, которую нужно совершить для удаления электрона из металла в вакуум называют работой выхода. Она равна , где е -заряд электрона, - потенциал выхода. Работа выхода производится электронами - за счет уменьшения их кинетической энергии. Поэтому понятно, что медленно движущиеся электроны вырваться из металла не могут. Работа выхода зависит от химической природы металла и состояния его поверхности загрязнения, следы влаги и пр. изменяют ее величину. Для чистых металлов работа выхода колеблется в пределах нескольких электронвольт. Электрон проводимости может вылететь из какого либо металла в том случае, если его энергия превышает работу выхода А электрона из металла. Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.
Концентрация электронов проводимости в металле весьма велика; их тепловые скорости при данной температуре различны и распределены, по классическим представлениям, в соответствии с законом Максвелла. Это означает, что даже при средних температурах в металле имеется достаточно большое число электронов проводимости, способных совершить работу выхода и вылететь из металла. При этом работа выхода равна убыли кинетической энергии где m, е - соответственно масса и заряд электрона, и - скорости электрона до и после выхода из металла. При обычных температурах количество электронов, имеющих скорость, достаточную для вылета, очень невелика. Существуют несколько способов сообщения электронам дополнительной энергии, необходимой для удаления их из металла: нагревание проводника (термоэлектронная эмиссия); облучение металлов видимым и ультрафиолетовым светом (фотоэлектронная эмиссия); воздействие ускоряющего внешнего электрического поля (автоэлектронная, или холодная эмиссия); бомбардировка металла электронами или ионами.
Для того чтобы получить значительный поток электронов, так называемый эмиттер нагревают до температур порядка 2000÷2500 К.
Для исследования термоэлектронной эмиссии можно использовать установку, состоящую из двух электродов - анода А и катода К, которые помещены в вакуум (рис.18.1). Катод выполнен в виде нити, анод - в виде коаксиального цилиндра. Катод, являющийся источником электронов, подогревается с помощью специальной батареи накала Бн.
Анодная батарея Ба служит для создания электрического поля Евн между катодом и анодом. Когда нить разогрета, возникает электронное, облако, несущее отрицательный заряд. В результате включения батареи Ба анода поток электронов начинает двигаться между катодом и анодом, т.е. в цепи начинает протекать электрический ток. Сила тока зависит от температуры нити,
напряжения Ua, которое создает анодная батарея, материала катода и геометрии электродов. Зависимость анодного тока, регистрируемого гальванометром G, от анодного напряжения I=f(Ua) называется вольт - амперной характеристикой установки.
31. Эмиссионные явления и их применение Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего наблюдается явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вторичную электронную и автоэлектронную эмиссии. 1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергиям) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным. Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод K и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи Ба, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны. Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока Iа от анодного напряжения Uа, —вольт-амперную характеристику(рис. 153), то оказывается, что она не является линейной, т. е. для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока I от анодного напряжения в области малых положительных значений U описываетсязаконом трех вторых (установлен русским физиком С. А. Богуславским (1883—1923) и американским физиком И. Ленгмюром (1881—1957)):
где В—коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.
При увеличении анодного напряжения ток возрастает до некоторого максимального значения Iнас, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: где А — работа выхода электронов из катода, T — термодинамическая температура, С — постоянная, теоретически одинаковая доя всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочно-земельного металла), работа выхода которых равна 1—1,5 эВ. На рис. 153 представлены вольт-амперные характеристики для двух температур катода: Т1 и T2, причем Т2>Т1. С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Uа=0 наблюдается анодный ток, т. е. некоторые электроны, эмитируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля.Явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирования электромагнитных колебаний в т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.
2. Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.
3. Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами. Отношение числа вторичных электронов n2 к числу первичных n1, вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:
Коэффициент d зависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриков d больше,чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторичные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.
Для примера на рис. 154 приведена качественная зависимость коэффициента вторичной электронной эмиссии d от энергии Е падающих электронов для КСl. С увеличением энергии электронов d возрастает, так как первичные электроны все глубже проникают в кристаллическую решетку и, следовательно, выбивают больше вторичных электронов. Однако при некоторой энергии первичных электронов d начинает уменьшаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значение dmaxдля КCl достигает »12 (для чистых металлов оно не превышает 2).
Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях (ФЭУ), применимых для усиления слабых электрических токов. ФЭУ представляет собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов — эмиттеров (рис. 155). Электроны, вырванные из фотокатода под действием света, попадают на эмиттер Э1, пройдя ускоряющую разность потенциалов между К и Э1. Из эмиттера Э1 выбивается d электронов. Усиленный таким образом электронный поток направляется на эмиттер Э2, и процесс умножения повторяется на всех последующих эмиттерах. Если ФЭУ содержит n эмиттеров, то на аноде А, называемомколлектором, получается усиленный в dn раз фотоэлектронный ток.
4. Автоэлектронная эмиссия — это эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигурация электродов которой (катод — острие, анод — внутренняя поверхность трубки) позволяет при напряжениях примерно 103 В получать электрические поля напряженностью примерно 107 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 105 —106 В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление называется такжехолодной эмиссией.Объяснение механизма этого явления возможно лишь на основе квантовой теории.
32. Ионизация газов. Несамостоятельный газовый разрядГазы при не слишком высоких температурах и при давлениях, близких к атмосферному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух заряженный электрометр с хорошей изоляцией, то его заряд долго остается неизменным. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества, когда некоторая часть его молекул ионизуется, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (например, поднеся к заряженному электрометру пламя свечи, наблюдаем спад его заряда; здесь электропроводность газа вызвана нагреванием). При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положительных ионов. Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохождение электрического тока через газы называется газовым разрядом. Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафиолетовое, рентгеновское и g-излучения), корпускулярное излучение (потоки электронов, протонов, a-частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию, называемуюэнергией ионизации, значения которой для атомов различных веществ лежат в пределах 4¸25 эВ. Одновременно с процессом ионизации газа всегда идет и обратный процесс —процесс рекомбинации: положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации.Строго говоря, электропроводность газа нулю не равна никогда, так как в нем всегда имеются свободные заряды, образующиеся в результате действия на газы излучения радиоактивных веществ, имеющихся на поверхности Земли, а также космического излучения. Эта незначительная электропроводность воздуха (интенсивность ионизации под действием указанных факторов невелика) служит причиной утечки зарядов наэлектризованных тел даже при хорошей их изоляции.Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока.
Рассмотрим цепь, содержащую газовый промежуток (рис. 156), подвергающийся непрерывному, постоянному по интенсивности воздействию ионизатора. В результате действия ионизатора газ приобретает некоторую электропроводность и в цепи потечет ток, зависимость которого от приложенного напряжения дана на рис. 157.
На участке кривой ОА сила тока возрастает пропорционально напряжению, т. е. выполняется закон Ома. При дальнейшем увеличении напряжения закон Ома нарушается: рост силы тока замедляется (участок AB) и наконец прекращается совсем (участок ВС). Это достигается в том случае, когда ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. В результате получаем ток насыщения (Iнас), значение которого определяется мощностью ионизатора. Ток насыщения, таким образом, является мерой ионизирующего действия ионизатора. Если в режиме ОС прекратить действие ионизатора, то прекращается и разряд. Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными. При дальнейшем увеличении напряжения между электродами сила тока вначале медленно (участок CD), а затем резко (участок DE)возрастает. Механизм этого явления будет рассмотрен в следующем разделе.
Самостоятельный газовый разряд и его типы
Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным. Рассмотрим условия возникновения самостоятельного разряда. Как уже указывалось, при больших напряжениях между электродами газового промежутка (см. рис. 156) ток сильно возрастает (участки CD и DE на рис. 157). При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны — к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD (см. рис. 157). Описанный процесс называется ударной ионизацией.
Однако ударная ионизация под действием электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Такие процессы схематически показаны на рис. 158: 1) ускоренные полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в нормальное состояние сопровождается испусканием фотона (процесс 3); 3) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называемый процесс фотонной ионизации молекул (процесс 4}; 4) выбивание электронов из катода под действием фотонов (процесс 5).Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), в к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сала тока растет уже практически без увеличения напряжения (участок DE на рис. 157).
В результате описанных процессов (1—6) число ионов и электронов в объеме газа лавинообразно возрастает и разряд становятся самостоятельным, т. е. сохраняется после прекращения действия внешнего ионизатора. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя. В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда:тлеющем, искровом, дуговом и коронном.
1. Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30—50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении » 5,3 ¸ 6,7 кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении »13 Па разряд имеет вид. Непосредственно к катоду прилегает тонкий светящийся слой 1 —первое катодное свечение, иликатодная пленка, затем следует темный слой 2 —катодное темное пространство, переходящее в дальнейшем в светящийся слой 3 —тлеющее свечение, имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 —фарадеево темное пространство, за которым следует столб ионизированного светящегося газа 5 —положительный столб.Положительный столб существенной роли в поддержании разряда не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катодные части разряда по форме и величине остаются неизменными. В тлеющем разряде особое значение для его поддержания имеют только две его части: катодное темное пространство и тлеющее свечение. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.
При дальнейшем откачивании трубки при давлении »1,3 Па свечение газа ослабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положительными ионами, при таких разрежениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударяясь о стекло, вызывают его свечение, так называемуюкатодолюменесценцию. Поток этих электронов исторически получил название катодных лучей. Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия проникают в пространство за катодом и образуют резко ограниченный пучок, получивший название каналовых (или положительных) лучей, названных по знаку заряда, который они несут.
Тлеющий разряд широко используется в технике. Так как свечение положительного столба имеет характерный для каждого газа цвет, то его используют в газосветных трубках для светящихся надписей и реклам (например, неоновые газоразрядные трубки дают красное свечение, аргоновые—синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, поглощается нанесенным на внутреннюю поверхность трубки флуоресцирующим веществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напыления металлов. Вещ