Зависимость максимальной дальности считывания информации от высоты знака
Высота знака, мм | 2,5 | 3,5 | ||||||||
Максимальная дальность считывания, м | 1,1 | 1,4 | 1.7 | 2,2 | 2,8 | 3,9 | 6,6 |
В зависимости от расстояния наблюдения, обеспечиваемого размерами и светотехническими характеристиками индикатора, различаются индикаторы индивидуального пользования (расстояние наблюдения до 1,5 м); группового пользования (до 4 м); коллективного пользования (более 4 м).
Уровень комфортного считывания может быть определен по номограммам [16] зависимостей углового размера знака от расстояния наблюдения при заданном размере знака. Учитывая, что острота зрения человека примерно равна одной угловой минуте, при умеренном уровне внешней освещенности для уверенного, комфортного считывания информации угол зрения должен для семисегментных индикаторов составлять примерно шесть-семь угловых минут.
Рис. 3.5. Обозначение светящихся элементов семисегментного полупроводникового индикатора
На рис. 3.4 представлена часть такой номограммы для индикаторов с высотой знака h, равной 2 — 12 мм, наиболее часто встречающейся среди выпускаемых ППИ. Однако в условиях повышенных уровней внешних освещений этими данными пользоваться не рекомендуется. Угловой размер знака должен быть примерно 20'; кроме того, для обеспечения надежного считывания информации с индикаторов в этих условиях необходимо применять специальные меры по повышению контраста, о чем будет подробно рассказано в гл. 5.
С точки зрения схемных решений по управлению индикаторами все ППИ могут быть представлены двумя группами.
К первой группе относятся полупроводниковые индикаторы в основном гибридной конструкции, нашедшие применение в промышленных приборах. Такие индикаторы, как правило, имеют большие габаритные размеры. Каждый из сегментов этого типа индикаторов имеет отдельный светодиод, а каждый из светодио-дов — свой управляющий вход. К этой же группе ППИ относятся семисегментные индикаторы со встроенными схемами управления (К490ИП1, 490ИП1 и К490ИП2, 490ИП2).
Ко второй группе цифровых индикаторов относятся индикаторы монолитной конструкции. Они изготавливаются методом диффузии полупроводниковых переходов для нескольких индикаторов на одну подложку, т. е. в одном корпусе такого прибора размещено несколько индикаторов (четыре — шесть и более). Как правило, такие индикаторы имеют общие управляющие входы для одноименных сегментов нескольких цифр. Монолитные индикаторы применяются в основном в индикаторах приборов индивидуального пользования, в частности в наручных часах, калькуляторах, переносных приборах.
Различие в конструктивном исполнении индикаторов и в организации их выводов потребовало, естественно, различного управления ими. Существует два метода управления цифровыми индикаторами: управление в статическом режиме (или в режиме постоянного тока) и в мультиплексном режиме (или режиме последовательного стробирования цифр).
Статический режим рекомендуется использовать для управления полупроводниковыми цифровыми индикаторами (ППЦИ) в устройствах отображения информации с малой информативной емкостью. Для этого используются индикаторы первой группы, имеющие отдельный управляющий вывод для каждого элемента индикации (сегмента).
Мультиплексный режим рекомендуется применять для управления ППЦИ в устройствах отображения информации повышенной и большой информативности. В таких устройствах используются в основном индикаторы второй группы — индикаторы монолитной конструкции, имеющие управляющие выводы для одноименных сегментов нескольких цифр, размещенных в одном корпусе.
Выбор режима управления ППЦИ основан также на определении объема и стоимости оборудования управления необходимым количеством цифр. При этом необходимо учитывать не только стоимость покупных электрорадиоэлементов, но и объем и стоимость работ по изготовлению плат печатного монтажа, монтажа электрических соединений, относительную стоимость занимаемых объемов и масс. Кроме того, при выборе режима управления следует помнить, что, как будет показано в § 3.4, мультиплексный режим управления ППЦИ позволяет снизить энергопотребление индикаторов при сохранении их яркостных характеристик. Снижение масс, габаритных размеров и стоимости источников питания индикаторов также необходимо принимать во внимание при выборе режима управления ППЦИ.
Независимо от методов управления индикаторами наиболее логичной и простой формой передачи цифровой информации является передача ее в виде двоично-десятичного кода. Эта информация по ее получении должна быть преобразована в семисегментный позиционный код, воспринимаемый индикаторами. Для всех семисегментных индикаторов обозначение сегментов унифицировано (рис. 3.5).
3.2. СХЕМЫ УПРАВЛЕНИЯ ЦИФРОВЫМИ ПОЛУПРОВОДНИКОВЫМИ ИНДИКАТОРАМИ В СТАТИЧЕСКОМ РЕЖИМЕ
Для индикации информации, поступающей в виде логических уровней «один из десяти», наиболее простым вариантом исполнения дешифратора для цифрового индикатора является схема диодного дешифратора, представленная на рис. 3.6. При подаче высокого логического уровня на один из десяти входов такого дешифратора индикатор с общим катодом, например индикатор ЗЛС320А-Е, высвечивает цифру, соответствующую номеру этого входа. Аналогичный дешифратор может быть разработан для семисегментного индикатора с общим анодом, а также и для пятисегментного.
Рис. 3.6. Схема диодного дешифратора для управления семисегмснтным индикатором с общим катодом
При использовании диодных дешифраторов необходимо следить за обеспечением токовых режимов индикаторов, зависящих от динамического сопротивления сегмента, диодов дешифратора, от сопротивления источника сигнала. Подход к расчетам схем приведен ниже.
Необходимо отметить, что такие схемы подключения индикаторов и дешифраторов могут быть использованы совместно с полупроводниковыми схемами в качестве источников информации только для ограниченного количества типов индикаторов, поскольку нагрузочная способность микросхем широкого применения не может обеспечивать необходимый токовый режим свечения многих типов сегментов индикаторов. Объем электронного оборудования в подобных схемах растет за счет необходимой установки усилителей-формирователей тока на каждом из входов диодного дешифратора.
Учитывая, что наиболее рациональным и чаще встречающимся способом передачи информации является передача ее в виде двоично-десятичного кода (ДДК), необходимо более широко рассмотреть возможности дешифрации информации из ДДК в позиционный семисегментный код цифровых индикаторов.
При передаче информации в виде ДДК наиболее простым способом управления цифровыми ППИ является способ управления в статическом режиме (режиме постоянного тока), при котором каждый индикатор обеспечивается устройствами памяти, дешифратором ДДК в позиционный код (ПК), воспринимаемый ППЦИ, а также формирователями тока.
В общем виде структурная схема управления индикатором в режиме постоянного тока представлена на рис. 3.7.
Рис. 3.7. Структурная схема управления полупроводниковым индикатором (семисегментным) в режиме постоянного тока
Рис. 3.8. Схема подключения ППИ к дешифратору двоично-десятичного кода в семисегментный позиционный код, воспринимаемый индикатором: а — ППИ с общим катодом; б — с общим анодом
Рис. 3.9. Схема входных каскадов ИМС К514ИД1, 514ИД1, К514ИД2, 514ИД2
Дешифратор преобразует информацию ДДК в семиразрядный позиционный код. Полупроводниковые индикаторы являются токовыми приборами, для их нормального функционирования необходимо стабилизировать прямой ток через каждый элемент Эту задачу выполняют формирователи тока. Таким образом, преобразованная из ДДК в позиционный код информация поступает с нормированными по току характеристиками на управляющие входы индикатора. При необходимости индикации десятичных значений параметров поступающие на схему управления данные должны содержать информацию о включении децимальной точки (ДТ). Эта информация по сигналу «Разрешение записи» запоминается устройством памяти ДТ, нормируется формирователем тока и подается на светодиод децимальной точки индикатора.
Рис. 3.10. Схема выходов ИМС К514ИД1 и 514ИД1
Рис. 3.11. Схема выходов ИМС К514ИД2 и 514ИД2
В табл. 3.1 представлен перечень наиболее часто применяющихся в промышленных устройствах отображения информации микросхем, предназначенных для дешифрации цифровых сигналов двоичного кода в семисегментный позиционный код полупроводниковых индикаторов.
Схема подключения полупроводниковых цифровых индикаторов к дешифраторам.На рис. 3.8 представлены схемы подключения ППЦИ с общим катодом и общим анодом к соответствующим дешифраторам двоичного кода в семисегментный позиционный код индикатора.
Рис. 3.12. Принципиальная схема преобразования и индикации информации на ПНИ с общим анодом при использовании дешифратора тина 514ИД2, К514ИД2
Входные каскады дешифраторов К514ИД1, 514ИД1, К514ИД2, 514ИД2 одинаковы, их принципиальные электрические схемы приведены на рис. 3.9. Различие подключения индикаторов с общим катодом и общим анодом к дешифраторам объяс няется различием построения выходных каскадов последних (рис. 3.10 и 3.11). Представлены схемы выходов микросхем К514ИД1, 514ИД1 и К514ИД2, 514ИД2 соответственно.
Таблица 3.1. Общие данные о схемах управления цифровыми полупроводниковыми индикаторами
Тип схемы управления | Функциональное назначение | Вид цифрового индикатора | Число информационных входов | Число выходов | Iвых макс. каждого выхода, мА |
514ИД1, К514ИД1 | Дешифратор дво- ичного кода в семи- сегментный | Семисегмент- ные с ОК | 7,5 | ||
514ИД2, К514ИД2 | То же | Семисегмент- ные с ОА | |||
514ПР1, К514ПР1 | Дешифратор дво- ичного кода в семи- сегментный с регист- ром памяти | То же | |||
514ИД4А, К514ИД4А | Дешифратор дво- ичного кода в гексо- децимальный с па- мятью и формирова- телем тока | Семисегмент- ные с ОК красно- го, желтого, зеле- ного цветов | |||
514ИД4Б, К514ИД4Б | То же | То же | |||
514ИД4В, К514ИД4В | » | » | |||
533ИД18 | Дешифратор дво- ичного кода в семи- сегментный | Семисегмент- ные с ОА | |||
514ПП1, К514ПП1 | То же » » | То же » » | |||
133ПП4 | » » | » » |
Формирователями токов для сегментов индикатора с общим анодом служат резисторы R1 — R7 (рис. 3.12), для децимальной точки — резистор Re, а для децимальной точки индикатора с общим катодом — резистор R.
Сопротивления R1 — R7 могут быть определены из следующего соотношения:
R = (Uип—Uпр—Uдип)/Iпр, (3.1)
где Uим напряжение источника питания, В; Uпр — прямое напряжение светодиода при постоянном токе через сегмент Iпр, В; Uш, - выходное напряжение дешифратора 514ИД2 во включенном состоянии, В; Iпр — прямой ток через светодиод, А (0,02 А).
При Uип = 5,5 В, UПр = 2,5 В, UДин=0,45 В R = 102 Ом, ближайший номинал по шкале номиналов сопротивлений по ГОСТ 2825-67 составляет 100 Ом.
Аналогичные расчеты позволяют вычислить сопротивление R» для формирования тока децимальной точки (Rs=120 Ом).
Максимально допустимые выходные токи дешифраторов для индикаторов с общим катодом и общим анодом составляют 7,5 и 22 мА соответственно. При проектировании дисплеев может возникнуть необходимость усиления мощности выходных каскадов микросхем. На рис. 3.13, а и б приведены возможные схемы включения транзисторов на выходах указанных дешифраторов.
На рис. 3.12 представлена аппаратурная реализация схемы управления постоянным током индикатора ЗЛС324Б1.
В качестве устройств памяти кода данных и наличия децимальной точки использованы микросхемы типа К155ИР1, в качестве дешифратора двоично-десятичного кода в семисегментный позиционный код использован дешифратор 514ИД2. В качестве устройств памяти могут быть использованы и другие микросхемы с аналогичными функциональными возможностями.
Рис. 3.13. Схема подключения усилительного транзистора на выходе дешифратора К514ИД1 (514ИД1) (а) и К514ИД2 (514ИД2) (б)
Рис. 3.14. Схема подключения ППН с изменяемым цветом свечения к дешифратору двоично--десятичного кода r семисегментныи код, воспринимаемый индикатором: