Тип: относительная или шкала отношений

Основные термины и определения метрологии.

Метрология- наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Объект измерения- это сложное, многогранное явление или процесс (например, электрические колебания на выходе автогенератора), характеризующийся множеством отдельных физических параметров, таких как: (амплитудой, частотой, фазой, формой, скважностью и т.д.).

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств.

3. Направление развития современной метрологии

Современная метрология включает три составляющие: законодательную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию.

Одна из основных задач метрологии – обеспечение единства измерений. Эта задача может быть решена при соблюдении двух основных условий:

· Выражение результатов измерений в единых узаконенных единицах.

· Установление допускаемых погрешностей результатов измерений и пределов, за которые они не должны выходить при заданной вероятности.

Общей целью стандартизации является защита интересов потребителей и государства по вопросам качества продукции, процессов и услуг.

Стандартизация направлена на достижение следующих целей:

безопасность продукции, работ и услуг для окружающей среды, жизни, здоровья и имущества;

безопасность хозяйственных объектов с учетом риска возникновения природных и техногенных катастроф и других чрезвычайных ситуаций;

обороноспособность и мобилизационная готовность страны;

техническая и информационная совместимость, а также взаимозаменяемость продукции;

единство измерений;

качество продукции, работ и услуг в соответствии с уровнем развития науки, техникие технологии;

Международные организации по метрологии.

 

В 1955 году была создана Международная Организация Законодательной Метрологии (МОЗМ), объединяющая сегодня более 80 стран мира. Среди основных целей и задач этой межправительственной организации - установление взаимного доверия к результатам измерений технических характеристик сырья, полуфабрикатов и промышленной продукции, получаемых в каждой отдельной стране-участнице МОЗМ.

Международная организация мер и весов (МОМВ),созданная в 1875 году решением Метрической конвенции (17 стран, включая Россию), в настоящее время является наиболее старейшей и представительной международной организацией.

5.

Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).

6. 1 тип: номинальная или шкала наименований

Этот базовый и самый примитивный тип шкалы. При его использовании каждому объекту присваивается только идентификационный номер, как, например, номера игроков в спортивной команде, номера телефонов и т.д.

Операции в данной шкале:

Тип: относительная или шкала отношений - student2.ru

Тип: порядковая шкала

Этот тип шкалы определяет порядок или ранг объектов наблюдения. Расстояния между объектами, которые следуют друг за другом (по убыванию или по возрастанию) не являются равными. На основании результата ранжирования нельзя сказать, что расстояние между свойствами объектов Тип: относительная или шкала отношений - student2.ru и Тип: относительная или шкала отношений - student2.ru равны расстоянию между свойствами объектов Тип: относительная или шкала отношений - student2.ru и Тип: относительная или шкала отношений - student2.ru . Часто данный тип шкалы еще называют шкалой восприятия. Например, оценка качества вина по десятибалльной шкале – наиболее понравившееся качество 10 баллов, наименее – 1 балл.

Операции в данной шкале:

Тип: относительная или шкала отношений - student2.ru

Тип: интервальная шкала

В отличие от порядковой шкалы, здесь имеет значение не только порядок следования величин, но и величина интервала между ними. Пример для данного типа шкалы: температура воды в море утром – 18 градусов, вечером – 24, т.е. вечерняя на 5 градусов выше, но нельзя сказать, что она в 1.33 раз выше.

Операции, которые можно выполнять на базе этой шкалы:

Тип: относительная или шкала отношений - student2.ru

тип: относительная или шкала отношений

В отличие от интервальной шкалы может отражать то, во сколько один показатель больше другого. Относительная шкала имеет нулевую точку, которая характеризует отсутствие измеряемого качества. Например: цена на товар. Здесь за точку отсчета можно взять «ноль» рублей. Отметим, что на практике не часто удается привести

7.

8). 1. По характеристике точностиизмерения делятся на равноточные и неравноточные.

Равноточными измерениямифизической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениямифизической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измеренийизмерения делятся на однократные и многократные.

Однократное измерение– это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения– это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величиныизмерения делятся на статические и динамические.

Статические измерения– это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения– это измерения изменяющейся, непостоянной физической величины.

4. По предназначениюизмерения делятся на технические и метрологические.

Технические измерения– это измерения, выполняемые техническими средствами измерений.

Метрологические измерения– это измерения, выполняемые с использованием эталонов.

5. По способу представления результатаизмерения делятся на абсолютные и относительные.

Абсолютные измерения– это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения– это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатовизмерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения– это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения– это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения– это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения– это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

8) Дифференциальный метод –этометод измерений, при которомизмеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Измеряемая величина C сравнивается непосредственно или косвенно с величиной Cм, воспроизводимой мерой. О значении величины C судят по измеряемой прибором разности DC = C — Cм и по известной величине Cм, воспроизводимой мерой. Следовательно, C = Cм + DC.

Примером дифференциального метода могут служить измерения, выполняемые при поверке мер длины сравнением с эталонной мерой на компараторе.

Нулевой метод является разновидностью дифференциального метода. Это такой метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

Например, индикатор закрепляют в стойке на плите и устанавливают на нуль по какому-то образцу, а затем измеряют деталь. В этом случае индикатор будет показывать отклонение размера контролируемой детали относительно размера установочного образца.

Метод измерений замещением – это метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.

Например, взвешивание с поочередным помещением измеряемой массы груза и гирь на одну и ту же чашу весов.

Метод измерений дополнением – это метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

РМГ 29-99 предусмотрены также контактный и бесконтактный методы измерений.

Контактный метод измерений – это метод измерений, основанный на том, что чувствительный элемент прибора приводится в контакт с объектом измерения.

Например, измерение диаметра вала измерительной скобой или контроль проходным и непроходным калибрами, измерение температуры тела термометром.

Бесконтактный метод измерений – это метод измерений, основанный на том, что чувствительный элемент средства измерений не приводится в контакт с объектом измерения.

9) Погрешность результата измерения (англ. error of a measurement) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.

Систематическая погрешность измерения (англ. systematic error) – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины.

Инструментальная погрешность измерения (англ. instrumental error) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.

Субъективная погрешность измерения – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.

10) Средства измерения классифицируются по следующим критериям:

1 по способам конструктивной реализации;

2 по метрологическому предназначению.

11) меры подразделяют на однозначные (мера, хранящая один размер величины, например, плоскопараллельная концевая мера длины или конденсатор постоянной емкости) и многозначные (мера, хранящая несколько размеров величины, например, штриховая мера длины и конденсатор переменной емкости). В измерительной практике широко применяют не только отдельные меры, но и наборы мер (комплект мер разного размера одной и той же величины,например, набор плоскопараллельных концевых мер длины), а также магазины мер (набор мер, конструктивно объединенных в одно устройство, в котором имеются приспособления для их соединения в различных комбинациях,например, магазин электрических сопротивлений).

12)

13 Однозначная меравоспроизводит физическую величину одного размера. Из однозначных мер собирают наборы мер. Набор мер – это специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера (набор гирь).

Многозначная меравоспроизводит ряд одноименных величин различного размера.

14)Измерительным прибором называется устройство, с помощью которого измеряемая величина сравнивается с единицей измере­ния.

Показывающие — приборы, по которым только отсчитывают измеряемую величину в данный момент времени.
Самопишущие (регистрирующие) приборы снабжены уст­ройством для автоматической регистрации (записи) значения измеряемой величины за все время работы прибора. Они дают возможность получить данные для последующего анализа работы объекта или хода технологического процесса путем обработки картограммы прибора. Самопищущие приборы могут иметь также показывающее устройство, в этом случае они одновременно явля­ются показывающими и самопишущими.
Сигнализирующие приборы имеют специальные приспособления для включения световой или звуковой сигнализации при достижении измеряемой величиной заранее заданного значения.
Регулирующие приборы имеют специальное устройство, предназначенное для автоматического поддержания измеряемой величины на заданном значении или для изменения ее по заданному закону. Такие приборы могут иметь показывающее или реги­стрирующее устройство или одновременно и то и другое.
Измерительные автоматы — это приборы с устройством, выполняющим по результатам измерения определенную работу, согласно установленной для них программе.

15) Измерительный преобразователь - техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. Это преобразование должно выполняться с заданной точностью и обеспечивать требуемую функциональную зависимость между входной и выходной величинами преобразователя. Основные характеристики измерительного преобразователя - это - функция преобразования, - чувствительность, - погрешность.

По характеру преобразования измерительные преобразователи подразделяются также на аналоговые, цифровые и аналого-цифровые

16) Государственная система обеспечения единства измерений создана с целью обеспечить единство измерений в пределах страны.

Система обеспечения единства измерений выполняет следующие задачи:

1 обеспечивает охрану прав и законодательно закрепленных интересов граждан;

2 обеспечивает охрану утвержденного правопорядка;

3 обеспечивает охрану экономики.

17) Государственная метрологическая служба включает: государственные научные метрологические центры (ГНМЦ); органы Государственной метрологической службы на территориях республик в составе Российской Федерации, автономной области, автономных округов, областей, городов Москвы и Санкт-Петербурга.

18) это один из видов деятельности по установлению норм, правил и характеристик в целях обеспечения:
экономии всех видов [ресурс] ов;
безопасности продукции, работ и услуг для окружающей среды, жизни, здоровья и имущества;

1. 19) Функция упорядочения — преодоление неразумного многообразия объектов (раздутая номенклатура продукции, ненужное многообразие документов). Она сводится к упрощению и ограничению. Житейский опыт говорит: чем объект более упорядочен, тем он лучше вписывается в окружающую предметную и природную среду с ее требованиями и законами.

2. Охранная (социальная) функция — обеспечение безопасности потребителей продукции (услуг), изготовителей и государства, объединение усилий человечества по защите природы от техногенного воздействия цивилизации. Реализация этой функции позволяет достигнуть целей 1 — 3, отмеченных выше.

3. Ресурсосберегающая функция обусловлена ограниченностью материальных, энергетических, трудовых и природных ресурсов и заключается в установлении в НД обоснованных ограничений на расходование ресурсов.

4. Коммуникативная функция обеспечивает общение и взаимодействие людей, в частности специалистов, путем личного обмена или использования документальных средств, аппаратных (компьютерных, спутниковых и пр.) систем и каналов передачи сообщений. Эта функция направлена на преодоление барьеров в торговле и на содействие научно-техническому и экономическому сотрудничеству.

5. Цивилизующая функция направлена на повышение качества продукции и услуг как составляющей качества жизни (для достижения цели 6). Например, от жесткости требований государственных стандартов к содержанию вредных веществ в пищевых продуктах, питьевой воде, сигаретах непосредственно зависит продолжительность жизни населения страны. В этом смысле стандарты отражают степень общественного развития страны, т.е. уровень цивилизации.

6. Информационная функция. Стандартизация обеспечивает материальное производство, науку и технику и другие сферы нормативными документами, эталонами мер, образцами — эталонами продукции, каталогами продукции как носителями ценной технической и управленческой информации. Ссылка в договоре (контракте) на стандарт является наиболее удобной формой информации о качестве товара как главного условия договора (контракта).

7. Функция нормотворчества и право применения проявляется в узаконивании требований к объектам стандартизации в форме обязательного стандарта (или другого НД) и его всеобщем применении в результате придания документу юридической силы. Соблюдение обязательных требований НД обеспечивается, как правило, принудительными мерами (санкциями) экономического, административного и уголовного характера.

Задачи стандартизации.

Основными задачами стандартизации являются:

1. обеспечение взаимопонимания между разработчиками, изготовителями, продавцами и потребителями (заказчиками);

2. установление оптимальных требований к номенклатуре и качеству продукции в интересах потребителя и государства, в том числе обеспечивающих ее безопасность для окружающей среды, жизни, здоровья и имущества;

3. установление требований по совместимости (конструктивной, электрической, электромагнитной, информационной, программной и др.), а также взаимозаменяемости продукции;

4. согласование и увязка показателей и характеристик продукции, ее элементов, комплектующих изделий, сырья и материалов;

5. унификация на основе установления и применения параметрических и типоразмерных рядов, базовых конструкций, конструктивно-унифицированных блочно-модульных составных частей изделий;

6. установление метрологических норм, правил, положений и требований;

7. нормативно-техническое обеспечение контроля (испытаний, анализа, измерений), сертификации и оценки качества продукции;

8. установление требований к технологическим процессам, в том числе в целях снижения материалоемкости, энергоемкости и трудоемкости, обеспечения применения малоотходных технологий;

9. создание и ведение систем классификации и кодирования технико-экономической информации;

10. нормативное обеспечение межгосударственных и государственных социально-экономических и научно-технических программ (проектов) и инфраструктурных комплексов (транспорт, связь, оборона, охрана окружающей среды, контроль среды обитания, безопасность населения и т.д.);

11. создание системы каталогизации для обеспечения потребителей информацией о номенклатуре и основных показателях продукции;

12. содействие реализации законодательства Российской Федерации методами и средствами стандартизации.

21)Основные принципы технического регулирования

Закон РФ «О техническом регулировании» формулирует и основные принципы технического регулирования. К ним относятся следующие:

1) принцип использования единых правил и установление требований к товарам, процессам их производства, хранения, перевозки, использования, реализации и утилизации, в том числе выполнение различных работ и оказание услуг населению. Этот принцип можно считать одним из основных условий внесения требований стандартизации в технические регламенты, что санкционирует приведение в соответствие эти требования и их изложение в технических регламентах и ряде других документов, необходимых в сфере стандартизации;

2) принцип соответствия технического регулирования степени развитости национальной экономики, а также степени становления материально—технической базы и развития науки и техники;

3) принцип независимости от продавцов, производителей, приобретателей и исполнителей. Иными словами органы по аккредитации и сертификации должны быть независимы в административном, организационном, финансовом, экономическом смыслах;

4) должна быть установлена единообразная система правил получения аккредитации;

5) должна иметься единая система правил и методов исследований, измерений и испытаний при реализации процедур оценки соответствия;

6) должен осуществляться принцип единства использования требований различных технических регламентов в условиях независимости, особенности и вида проводимой сделки; то есть технический регламент имеет статус обязательного для всех юридических и физических лиц на территории Российской Федерации, независимо от возникающих между ними в процессе ведения хозяйственной деятельности взаимоотношений. Основным направлением использования технических регламентов являются договорные взаимоотношения;

7) принцип неприемлемости какого—либо ограничения конкуренции при проведении мероприятий, связанных с получением аккредитации и сертификатов, что можно толковать, как поддержание здоровой конкуренции между претендентами на аккредитацию в качестве сертификационных органов, а также в качестве испытательных лабораторий, а в последствии – и повышение их работоспособности и производительности за счет повышения конкурентоспособности в сфере предоставления услуг сертификации;

8) принцип недопустимости совмещения в одном лице исполнителя полномочий сертификационного органа и надзорного или контрольного Государственного органа;

9) принцип непозволительности совмещения каким—либо одним органом полномочных обязанностей и органа по аккредитации, и органа по сертификации;

10) принцип недопустимости внебюджетного финансирования Государственного органа по вопросам контроля и надзора за соблюдением требований технических регламентов. Говоря о принципах технического регулирования, нельзя не упомянуть о механизмах, сформулированных в Законе «О техническом регулировании», которые направлены на решение вопросов, связанных с достижением следующих целей:

а) устранение разнообразных административных препятствий в сфере ведения бизнеса; и речь здесь идет о сокращении избыточного нормирования, контроля и обязательной сертификации;

б) устранение разного рода ограничений для продвижения по пути технического прогресса и ноу—хау;

в) увеличение активности предпринимателей в законотворческой сфере.

Закон Российской Федерации «О техническом регулировании» (статья 14) формулирует основные направления деятельности Национального органа Российской Федерации по стандартизации:

1) утверждение национальных стандартов;

2) принятие программы разработки национальных стандартов;

3) организация экспертизы проектов национальных стандартов;

4) обеспечение согласованности национальной системы стандартизации потребностям национальной экономики, а также зависимость ее от уровня состояния материально—технической базы и научно—технического прогресса;

5) осуществление учета правил стандартизации, национальных стандартов, других рекомендаций и нормативной базы в этой сфере, а также организационная работа, направленная на доступность вышеперечисленных документов всем заинтересованным лицам;

6) создание технических комитетов по стандартизации и координация их деятельности;

7) организация опубликования и каналов распространения национальных стандартов;

8) активное участие в работе над созданием Международных стандартов в соответствии с положениями уставов различных Международных организаций для обеспечения максимальных выгод для Российской Федерации в случае их одобрения и использования;

9) утверждение изображения знака соответствия национальным стандартам;

10) представление России и ее интересов в различных международных организациях, работающих в сфере стандартизации.

Наши рекомендации