Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения.

Средняя величина– это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

В качествеструктурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru ,

где Xi – варианта (значение) осредняемого признака;
m – показатель степени средней;
n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru ,

где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
fi – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:

№ п/п Возраст (лет) № п/п Возраст (лет) № п/п Возраст (лет) № п/п Возраст (лет)
1 2 3 4 5 18 18 19 20 19 6 7 8 9 10 20 19 19 19 20 11 12 13 14 15 22 19 19 20 20 16 17 18 19 20 21 19 19 19 19

Средний возраст рассчитаем по формуле простой средней:

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

Сгруппируем исходные данные. Получим следующий ряд распределения:

Возраст, Х лет Всего
Число студентов

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 1

Виды степенных средних

Вид степенной средней Показатель степени (m) Формула расчета
Простая Взвешенная
Гармоническая -1 Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru
Геометрическая Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru
Арифметическая Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru
Квадратическая Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru
Кубическая Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Формула средней геометрической

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i1, i2, i3,..., in. Очевидно, что объем производства в последнем году определяется начальным его уровнем (q0) и последующим наращиванием по годам:

qn=q0× i1× i2×...×in.

Приняв qn в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

Отсюда Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru

Структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru ,

где XMe – нижняя граница медианного интервала;
hMe – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
SMe-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
mMe – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

Рассмотрим определение моды и медианы по несгруппированным данным. Предположим, рабочие бригады, состоящей из 9 человек, имеют следующие тарифные разряды: 4 3 4 5 3 3 6 2 6. Так как в данной бригаде больше всего рабочих 3-го разряда, этот тарифный разряд будет модальным. Mo = 3.

Для определения медианы необходимо провести ранжирование: 2 3 3 3 4 4 5 6 6. Центральным в этом ряду является рабочий 4-го разряда, следовательно, данный разряд и будет медианным. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.

Если мода отражает наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальному закону распределения совокупности. Проиллюстрируем ее познавательное значение следующим примером.

Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 200 долларов в месяц, а месячные доходы последнего составляют 50000 долларов (табл. 2.1).
Таблица 2.1 - Месячные доходы исследуемой группы людей

N п/п
Доход, долл. 50 000

Если воспользоваться средней арифметической, то получим средний доход, равный примерно 600 – 700 долларов, который имеет мало общего с доходами основной части группы. Медиана же, равная в данном случае

Me = 163 доллара, позволит дать объективную характеристику уровня доходов 99 % данной группы людей.

Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения). Предположим, распределение рабочих всего предприятия в целом по тарифному разряду имеет следующий вид

(табл. 2.2).

Таблица 2.2 - Распределение рабочих предприятия по тарифному разряду

Тарифный разряд Численность рабочих, человек
ВСЕГО

Определение моды по дискретному вариационному ряду:

Наибольшую частоту (60 человек) имеет 5-й тарифный разряд, следовательно, он и является модальным. Mo = 5.
Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда (NMe): Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru , где n - объем совокупности.
В нашем случае: Структурные средние - мода и медиана, особенности их расчета в дискретных и интервальных рядах распределения. - student2.ru .
Полученное дробное значение, всегда имеющее место при четном числе единиц совокупности, указывает, что точная середина находится между 95 и 96 рабочими. Необходимо определить, к какой группе относятся рабочие с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Рабочих с этими номерами нет в первой группе, где всего лишь 12 человек, нет их и во второй группе (12+48=60). 95-й и 96-й рабочие находятся в третьей группе (12+48+56=116), следовательно, медианным является 4-й тарифный разряд.

Наши рекомендации