Описание и кодировка используемых переменных

Название переменной Описание
Year Год (1990-2012)
Country Страна
Gdp_Growth Годовой темп роста ВВП (%)
GdpCgrow Годовой темп роста ВВП на душу населения (%)
GdpC ВВП на душу населения (доллары США)
Inv Доля инвестиций в ВВП (%)
Lab_Rate Доля экономически активного населения в возрастной группе 15-64
Exp Доля экспорта товаров и услуг в ВВП (%)
Imp Доля импорта товаров и услуг в ВВП (%)
Open Открытость торговли ( Описание и кодировка используемых переменных - student2.ru
Pub_Spend_Ed Доля государственных расходов на образование в ВВП (%)
Helth_ExpC Общие расходы на здравоохранение (доллары США)
Res_Exp Доля расходов на НИОКР в ВВП (%)
Gov_Con Доля государственных расходов в ВВП (%)
Old_Dep Коэффициент демографической нагрузки пожилыми (доля иждивенцев на 100 человек трудоспособного возраста)
Young_Dep Коэффициент демографической нагрузки детьми (доля иждивенцев на 100 человек трудоспособного возраста)
Age_Dep Коэффициент общей демографической нагрузки (доля иждивенцев на 100 человек трудоспособного возраста)
P65R Население в возрасте 65 лет и старше (% от общего числа)
P014R Население в возрасте до 15 лет (% от общего числа)
Life_Exp Ожидаемая продолжительность жизни при рождении (количество лет)
FertR Коэффициент рождаемости (число детей на одну женщину)
DeathR Коэффициент смертности (на 1000 человек)
Pop_Gr Годовой прирост населения (%)
Pop_Den Плотность населения (человек на км2)
Sec_Sch Продолжительность среднего образования (количество лет)
Ter_Enrol Доля выпускников школ, зачисленных в ВУЗы (%)

Таблица 5

Описание и кодировка используемых переменных - student2.ru
Описательная статистика для всех количественных переменных

Описание и кодировка используемых переменных - student2.ru

Рис. 14. Распределение зависимой переменной GdpCgrow

На рисунке 14 видно, что вероятность того, что рост ВВП на душу населения распределен нормально, мала. Отсюда следует вывод, что и остатки, вероятнее всего, будут распределены не нормально, и, следовательно, проверка различных гипотез будет не совсем корректна. Для приближения распределения к нормальному необходимо преобразовать переменную.

Если проведем формальные тесты на нормальность распределения, то все 3 теста на нормальность позволяют отвергнуть нулевую гипотезу о нормальности распределения цены (табл. 6).

Таблица 6

 
  Описание и кодировка используемых переменных - student2.ru

Формальные тесты на нормальность распределения

Стоит отметить, что и остальные количественные переменные так же имеют распределение, отличное от нормального (на основании формальных тестов и ядерной оценки плотности).

Теперь проанализируем взаимосвязи переменных между собой. Для этого построим корреляционную матрицу между количественными переменными (табл.7).Исходя из корреляционной матрицы, можно сделать вывод, что существует сильная положительная корреляция между демографическими переменными, например, доля населения младше 15 и коэффициент демографической нагрузки, уровень рождаемости и доля населения младше 15. Все демографические показатели взаимосвязаны, между ними существует тесная связь. Чтобы избежать в дальнейшем ситуации мультиколлинеарности, я не включу в уравнение регрессии факторы, сильно коррелированные с другими.

Таблица 7

Описание и кодировка используемых переменных - student2.ru
Матрица корреляций между наблюдаемыми переменными

Наши рекомендации