Комбинированные вероятностно-детерминированные модели
Все большее распространение в настоящее время находят математические прогнозирующие модели, являющиеся комбинацией статистических и детерминированных моделей. Именно эти модели позволяют обеспечить наилучшую точность прогнозирования, адаптивность к изменяющемуся процессу электропотребления [2, 5, 6]. Они базируются на концепции стандартизованного моделирования нагрузки [6], которая состоит в моделировании фактической нагрузки как совокупности стандартизованного графика (базовой составляющей, детерминированного тренда) и остаточной составляющей . Данная декомпозиция на составляющие наиболее часто носит аддитивный характер [2, 76 – 81]
, (5.1)
но иногда используется и мультипликативная декомпозиция [6]
, (5.2)
в частности, она применяется в Центральном энергоуправлении Великобритании (CEGB). В используемых же обозначениях графиков нагрузки , , малая буква d обозначает тип (номер) прогнозируемых суток.
В других работах [6] используется также модель, объединяющая свойства аддитивной и мультипликативной моделей:
, (5.3)
где , – детерминированные составляющие и – остаточная случайная составляющая.
Наиболее широкое применение в электроэнергетике имеет аддитивная модель (5.1), модели же (5.2) и (5.3) имеют ограниченное применение.
Процесс в первом приближении считают стационарным или почти стационарным, что упрощает его моделирование с использованием статистических моделей, рассмотренных выше.
Моделирование (выделение) стандартной составляющей осуществляют различными методами:
- путем сглаживания нестационарной реализации процесса скользящим [6, 11, 80] или экспоненциальным [6, 82] осреднением;
- аппроксимацией полиномами [6, 21];
- компенсацией стандартной составляющей на основе вычислении разностей n-го порядка [6, 83];
- разделением составляющих по частотам и моделированием конечными рядами Фурье [11, 21, 81];
- компенсацией математического ожидания суточными разностями [6, 21];
- путем декомпозиции по ортогональным векторам или функциям [5, 6];
- путем нейро-сетевого или нечеткого моделирования (сглаживания) [68, 71, 72] и др.
Кроме того, при моделировании стандартной составляющей также осуществляют ее декомпозицию на отдельные составляющие [6]
, (5.4)
где – составляющая, учитывающая изменение средней сезонной нагрузки; – составляющая, учитывающая недельную цикличность изменения электропотребления; – трендовая составляющая, моделирующая дополнительные эффекты, связанные с изменением времени восхода и захода солнца от сезона к сезону; – составляющая, учитывающая зависимость электропотребления от метеофакторов, в частности температуры.
Каждая из составляющих в комбинированной модели (5.1), (5.4) реализуется на основе того или иного статистического или детерминированного метода. Это и определяет многообразие комбинированных прогнозных математических моделей процесса (см. рис. 5.1). Комбинированные модели вида (5.1), (5.4) не всегда обязательно содержат все перечисленные составляющие: , , , , , . В ряде случаев одни составляющие вбирают в себя функции других отсутствующих в модели составляющих.
На рис. 5.1 приведено 14 вариантов используемых комбинированных прогнозирующих математических моделей. При этом в столбцах 2 – 7 таблицы приводятся составляющие модели с номерами детерминированных или статистических моделей (см. рис. 2.1, 2.2), которые используются для их моделирования.
В столбце 8 приводится краткое обозначение комбинированной модели в соответствии с детерминированными и статистическими моделями, которые в ней используются для моделирования составляющих: СС – модель скользящей средней; ЭС – модель экспоненциального сглаживания; АР – модель авторегрессии; СМ – модель спектрального разложения; КЛ – модель на основе кластерного анализа и теории распознавания образов; ПИ – модель на основе полиномиальной интерполяции; РФ – модель на основе разложения конечным рядом Фурье; АРИСС – модель авторегрессии интегрированного скользящего среднего; АРИССТ – то же, что АРИСС, но с дополнительно введенным фактором – температурой; ФКсТ – модель на основе фильтра Калмана, но с учетом температуры; ПИсТ – то же, что ПИ, но с учетом температуры; ВСС – модель взвешенного скользящего среднего; НС – модель нейронной сети.
В столбце 9 таблицы приводится номер литературного источника, откуда взято описание комбинированной модели.
Варианты реализации различных компонент комбинированной модели с использованием перечисленных статистических и детерминированных моделей, а также анализ получаемых при этом результатов будут приведены ниже.