Ошибки статистического наблюдения

Информация, полученная в ходе статистического наблюдения может не отвечать действительности, а расчетные значения показателей не соответствовать фактическим значениям.

Расхождение между расчетным значением и фактическим называется ошибкой наблюдения.

В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности. Ошибки регистрации характерны как для сплошного, так и для несплошного наблюдения, а ошибки репрезентативности — только для несплошного наблюдения. Ошибки регистрации, как и ошибки репрезентативности, могут бытьслучайными и систематическими.

Ошибки регистрации — представляют собой отклонения между значением показателя, полученного в ходе статистического наблюдения, и его фактическим значением. Ошибки регистрации бывают случайными (результат действий случайных факторов — перепутаны строки например) и систематическими (проявляются постоянно).

Ошибки репрезентативности — возникают, когда отобранная совокупность недостаточно точно воспроизводит исходную совокупность. Характерны для несплошного наблюдения и заключаются в отклонении величины показателя исследуемой части совокупности от его величины в генеральной совокупности.

Случайные ошибки — являются результатом действия случайных факторов.

Систематические ошибки — всегда имеют одинаковую направленность к увеличению или уменьшению показателя по каждой единице наблюдения, вследствие чего значение показателя по совокупности в целом будет включать накопленную ошибку.

Способы контроля:

§ Счетный (арифметический) — проверка правильности арифметического расчета.

§ Логический — основан на смысловой взаимосвязи между признаками.

Ряды распределения

После определения группировочного признака, количества групп и интервалов группировки данные сводки и группировкипредставляются в виде рядов распределения и оформляются в виде статистических таблиц.

Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

§ Атрибутивными — называют ряды распределения, построенные по качественными признакам.

§ Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называютсявариационными.

Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются Ошибки статистического наблюдения - student2.ru . Дискретная варианта — выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант, выраженное через частоты или частости:

Частоты — это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают Ошибки статистического наблюдения - student2.ru . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости( Ошибки статистического наблюдения - student2.ru ) — это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:

§ Полигона

§ Гистограммы

§ Кумуляты

§ Огивы

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) — частоты или частости.

Гистограмма

Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

Кумулята

Распределение признака в вариационном ряду по накопленным частотам (частостям) изображается с помощью кумуляты.

Огива

Огива строится аналогично кумуляте с той лишь разницей, что накопленные частоты помещают на оси абсцисс, а значения признака — на оси ординат.

Наши рекомендации