Общая классификация эвристических методов решения многокритериальных задач
Основными методами решения многокритериальных задач являются:
- принцип равномерности;
- принцип справедливой уступки;
- принцип выделения одного оптимизируемого критерия;
- принцип последовательной уступки;
- метод идеальной точки.
Принцип равномерности провозглашает целесообразность выбора такого варианта решения, при котором достигалась бы некоторая “равномерность” показателей по всем локальным критериям. Используют следующие реализации принципа равномерности:
- принцип равенства;
- принцип максимина;
- принцип квазиравенства.
Принцип равенства выражается следующим образом:
- оптимальным считается вариант, принадлежащий области компромиссов, при котором все значения локальных критериев равны между собой. Однако случай f1=f2=…=fk может не попасть в область компромиссов или вообще не принадлежать к области допустимых вариантов.
Принцип максимина выражается следующим образом:
- из области компромиссов выбирается вариант с минимальными значениями локальных критериев и среди них ищется вариант, имеющий максимальное значение. Равномерность в этом случае обеспечивается за счёт “подтягивания” критерия с наименьшим уровнем.
Принцип квазиравенства заключается в том, что стремятся достичь приближённого равенства всех локальных критериев. Приближение характеризуется некоторой величиной ε. Это принцип может быть использован в дискретном случае.
Следует отметить, что принципы равенства, несмотря на их привлекательность, не могут быть рекомендованы во всех случаях. Иногда даже небольшое отклонение от равномерности может дать значительный прирост одному из критериев.
Принцип справедливой уступки основан на сопоставлении и оценке прироста и убыли величины локальных критериев. Переход от одного варианта к другому, если они оба принадлежат области компромиссов, неизбежно связан с улучшением по одним критериям и ухудшением по другим. Сопоставление и оценка изменения значения локальных критериев может производиться по абсолютному значению прироста и убыли критериев (принцип абсолютной уступки), либо по относительному (принцип относительной уступки).
Принцип абсолютной уступки – целесообразным считается выбрать такой вариант, для которого абсолютное значение суммы снижения одного или нескольких критериев не превосходит абсолютное значение суммы повышения оставшихся критериев.
Можно показать, что принципу абсолютной уступки соответствует модель максимизации суммы критериев.
Недостатком принципа абсолютной уступки является то, что он допускает резкую дифференциацию уровней отдельных критериев, так как высокое значение интегрального критерия может быть получено за счёт высокого уровня одних локальных критериев при сравнительно малых значениях других критериев.
Принцип относительной уступки – целесообразно выбрать тот вариант, при котором суммарный относительный уровень снижения одних критериев меньше суммарного относительного уровня повышения других критериев.Принципу относительной уступки соответствует модель максимизации произведения критериев
Принцип относительной уступки весьма чувствителен к величине критериев, причём за счёт относительности уступки происходит автоматическое снижение “цены” уступки для локальных критериев с большой величиной и наоборот. В результате проводится значительное сглаживание уровней локальных критериев. Важным преимуществом принципа относительной уступки является также то, что он инвариантен к масштабу изменения критериев, то есть его использование не требует предварительной нормализации локальных критериев.
Принцип выделения одного оптимизируемого критерия заключается в том, что один из критериев является оптимизируемым и выбирают тот вариант, при котором достигается экстремум этого критерия. На другие критерии накладываются ограничения.
Принцип последовательной уступки и метод идеальной точки подробно описаны выше.