Элементы прогнозирования и интерполяции
Анализ динамики социально-экономических явлений, выявление и характеристика основной тенденции развития дают основание для прогнозирования - определения будущих размеров уровня экономического явления.
Процесс прогнозирования предполагает, что закономерность развития, действующая в прошлом (внутри ряда динамики), сохранится и в прогнозируемом будущем, то есть прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективой, и в прошлое - ретроспективой. Обычно, говоря об экстраполяции рядов динамики, подразумевают чаще всего перспективную экстраполяцию. Первоначальные прогнозы, как правило, сводятся к экстраполяции тенденции. При этом могут использоваться разные методы, в зависимости от исходной информации. Можно выделить следующие элементарные методы экстраполяции: на основе среднего абсолютного прироста, среднего темпа роста и экстраполяция на основе применения метода наименьших квадратов и представления развития явлений во времени в виде уравнения тренда, т.е. математической функции уровней ряда (у) от фактора времени (t).
Прогнозирование по среднему абсолютному приросту может быть выполнено в том случае, если есть уверенность считать общую тенденцию линейной, то есть метод основан на предположении о равномерном изменении уровня (под равномерностью понимается стабильность абсолютных приростов).
В этом случае, чтобы получить прогноз на «i» шагов вперед (i - период упреждения), достаточно воспользоваться следующей формулой:
(9.34.)
где уn - фактическое значение в последней n-ой точке ряда (конечный уровень ряда);
- прогнозная оценка значения (п+1) уровня ряда; ∆¯ - значение среднего абсолютного прироста, рассчитанное для ряда динамики y1; y2; y3;…; yn.
Прогнозирование по среднему темпу роста можно осуществлять в случае, когда есть основание считать, что общая тенденция ряда характеризуется показательной (экспоненциальной) кривой. Для нахождения прогнозного значения на «i» шагов вперед необходимо использовать следующую формулу:
(9.35.)
где К¯p - средний коэффициент роста, рассчитанный для ряда y1; y2; y3;…; yn.
К недостаткам рассмотренных методов следует отнести то, что они учитывают лишь конечный и начальный уровень ряда, исключая влияние промежуточных уровней. Тем не менее, методы среднего абсолютного прироста и среднего темпа роста имеют весьма широкую область применения, что объясняется простотой их вычисления. Они могут быть использованы как приближенные, простейшие способы прогнозирования, предшествующие более глубокому количественно-качественному анализу.
Наиболее распространенным методом прогнозирования является аналитическое выражение тренда. При этом для выхода за границы исследуемого периода достаточно продолжить значения независимой переменной времени (t).
При таком подходе к прогнозированию предполагается, что размер уровня, харак-теризирующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить отдельно их влияние. В связи с этим ход развития связывается не с какими-либо конкретными факторами, а с течением времени. На практике для описания тенденции развития явления широко используются модели кривых роста, представляющие собой различные функции времени у = f(t).
Процедура разработки прогноза с использованием кривых роста включает в себя следующие этапы: 1) выбор одной или нескольких кривых, форма которых соответствует характеру изменения ряда динамики; 2) оценка параметров выбранных кривых;-3) проверка адекватности выбранных кривых прогнозируемому процессу и окончательный выбор кривой роста; 4) расчет точечного и интервального прогнозов.
Остановимся на величине доверительного интервала прогноза, который определяется по формуле:
9.36)
где:
σ - средняя квадратическая ошибка тренда;
y¯t+1 - расчетное значение уровня;
ta - доверительная величина, определяемая на основе t-критерия Стьюдента.
Вместо ta - критерия удобно использовать коэффициент (К*).
Например, необходимо провести прогноз на 2005-2006 гг. по данным таблицы (9.5) количества проданных квартир в N-ом регионе.
Для экстраполяции используем уравнение тренда, полученное по прямой: y¯t = 39,7 + 0,25t. Подставив соответствующее значение t в наше уравнение, получим точечные прогнозы на 2005-2006 гг. (графа 2 таблицы 9.9). Для построения интервальных прогнозов рассчитаем среднеквадратическую ошибку тренда (σt=0,56) и используем значения К
Результаты прогноза представлены в таблице 9.9.
Таблица 9.9.