Типы архитектур нейросетей

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть.

Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач.

По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения, в которых связи не имеют петель ( см. рис. 3), и сети рекуррентного типа, в которых возможны обратные связи(см. рис. 4)


Типы архитектур нейросетей - student2.ru
РИС.3. Нейросети прямого распространения

Типы архитектур нейросетей - student2.ru
РИС.4. Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт , придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть. Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I.

Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель.

Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя. Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается.

Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои. Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите рис. 5.


Типы архитектур нейросетей - student2.ru
РИС.5. Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач( что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость(это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству.

Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы.

Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена.

С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на рис. 6.


Типы архитектур нейросетей - student2.ru
РИС.6. Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.


Наши рекомендации