Функция полезности. Задача потребительского выбора

Одним из важных понятий экономической теории является домашнее хозяйство (потребитель). Главная проблема при изучении поведения потребителя заключается в том, чтобы установить, в каких объемах он приобретет наличные товары и услуги при заданных ценах и доходе.

Конкретное решение потребителя о покупке определенного набора товаров математически можно представить как выбор конкретной точки в пространстве товаров. Пусть Функция полезности. Задача потребительского выбора - student2.ru – конечное число рассматриваемых товаров, а Функция полезности. Задача потребительского выбора - student2.ru – вектор-столбец товаров, приобретенных потребителем за определенный срок (например, за год) при заданных ценах и доходе за тот же срок. Данный вектор называют потребительским набором.

Пространство товаров – это множество всевозможных наборов товаров Функция полезности. Задача потребительского выбора - student2.ru с неотрицательными координатами

Функция полезности. Задача потребительского выбора - student2.ru

В теории потребительского выбора предполагается, что каждый потребитель изначально имеет свои предпочтения на некотором подмножестве пространства товаров Функция полезности. Задача потребительского выбора - student2.ru . Это означает, что для каждой пары Функция полезности. Задача потребительского выбора - student2.ru , Функция полезности. Задача потребительского выбора - student2.ru имеет место одно из трех отношений:

Функция полезности. Задача потребительского выбора - student2.ru – набор х предпочтительнее у;

Функция полезности. Задача потребительского выбора - student2.ru – набор х менее предпочтителен, чем у;

Функция полезности. Задача потребительского выбора - student2.ru ~ Функция полезности. Задача потребительского выбора - student2.ru – для потребителя оба набора обладают одинаковой степенью предпочтения.

Отношения предпочтения обладают по крайней мере следующими свойствами:

1) если Функция полезности. Задача потребительского выбора - student2.ru , Функция полезности. Задача потребительского выбора - student2.ru , то Функция полезности. Задача потребительского выбора - student2.ru (транзитивность);

2) если Функция полезности. Задача потребительского выбора - student2.ru , то Функция полезности. Задача потребительского выбора - student2.ru (ненасыщаемость: больший набор всегда предпочтительнее меньшего).

Отношения предпочтения каждого потребителя при определенных слабых предположениях, касающихся предпочтений, можно (и удобно!) представить в форме индикатора предпочтений, т.е. такой функции полезности Функция полезности. Задача потребительского выбора - student2.ru , что из Функция полезности. Задача потребительского выбора - student2.ru следует Функция полезности. Задача потребительского выбора - student2.ru и из Функция полезности. Задача потребительского выбора - student2.ru ~ Функция полезности. Задача потребительского выбора - student2.ru следует Функция полезности. Задача потребительского выбора - student2.ru . Для каждого потребителя такое представление многовариантно. Например, если Функция полезности. Задача потребительского выбора - student2.ru – функция полезности, то Функция полезности. Задача потребительского выбора - student2.ru , Функция полезности. Задача потребительского выбора - student2.ru – это также индикаторы предпочтений.

Введение функции полезности позволяет заменить отношения предпочтения привычными отношениями между числами: больше, меньше, равно.

В теории потребления предполагается, что функция полезности обладает следующими свойствами:

1) Функция полезности. Задача потребительского выбора - student2.ru – с ростом потребления блага полезность растет;

2) Функция полезности. Задача потребительского выбора - student2.ru – небольшой прирост блага при его первоначальном отсутствии резко увеличивает полезность;

3) Функция полезности. Задача потребительского выбора - student2.ru – с ростом потребления блага скорость роста полезности замедляется;

4) Функция полезности. Задача потребительского выбора - student2.ru – при очень большом объеме блага его дальнейшее увеличение не приводит к увеличению полезности.

Условие 3 обычно используется в более расширительной трактовке: матрица вторых производных (матрица Гессе)

Функция полезности. Задача потребительского выбора - student2.ru

отрицательно определена.

Предельной полезностью товара называется предел отношения приращения полезности к вызвавшему этот прирост приращению товара:

Функция полезности. Задача потребительского выбора - student2.ru

таким образом, предельная полезность показывает, насколько возрастет полезность, если товар возрастет на малую единицу.

Поверхностью безразличия называется гиперповерхность размера Функция полезности. Задача потребительского выбора - student2.ru , на которой полезность постоянна:

Функция полезности. Задача потребительского выбора - student2.ru

или в дифференциальной форме

Функция полезности. Задача потребительского выбора - student2.ru (22.1)

Условие (22.1) означает, что касательная к поверхности безразличия перпендикулярна градиенту полезности.

С точки зрения потребителя наличие множества наборов товаров, обладающих одинаковой полезностью (т.е. одинаковой степенью предпочтения), означает возможность замены одного набора другим равноценным набором, в том числе возможность замены одного товара другим.

Пусть в соотношении (22.1) Функция полезности. Задача потребительского выбора - student2.ru для Функция полезности. Задача потребительского выбора - student2.ru , тогда это соотношение примет вид

Функция полезности. Задача потребительского выбора - student2.ru

Откуда Функция полезности. Задача потребительского выбора - student2.ru (22.2)

т.е. предельная норма замены первого товара вторым равна отношению предельных полезностей первого и второго товаров. Норма замены показывает, сколько требуется единиц второго товара, чтобы заменить выбывшую малую единицу первого товара.

Задача потребительского выбора (задача рационального поведения потребителя на рынке) заключается в выборе такого потребительского набора Функция полезности. Задача потребительского выбора - student2.ru , который максимизирует его функцию полезности при заданном бюджетном ограничении.

Бюджетным множеством называется множество тех наборов товаров, которые может приобрести потребитель, имея доход Функция полезности. Задача потребительского выбора - student2.ru :

Функция полезности. Задача потребительского выбора - student2.ru ,

где Функция полезности. Задача потребительского выбора - student2.ru – вектор-строка цен.

Формально задача потребительского выбора имеет вид:

u(x) ® max (22.3)

при условиях

Функция полезности. Задача потребительского выбора - student2.ru

Наши рекомендации