Демографических процессов
Общая характеристика демографических моделей.Для анализа и прогноза развития состояния человеческого общества (населения) используют демографические модели. Основными количественными характеристиками развития населения являются его количество, разделение по половозрастному составу и тип воспроизводства. Под типом воспроизводства демографы понимают соотношение показателей рождаемости, брачности и смертности в обществе и уровень социального контроля над этими показателями. Существует несколько подходов к разделению обществ по типам воспроизводства.
Согласно общей классической концепции[6] выделяются два основных типа воспроизводства населения.
Первый тип (к нему принадлежит большинство развивающихся государств с высокой рождаемостью и смертностью и низкой ожидаемой продолжительностью жизни) отличается очень высокой долей в населении в целом детских возрастов (0—14 лет) и небольшим процентом лиц пожилого возраста (65 лет и старше).
Ко второму типу относятся страны, имеющие невысокую рождаемость, низкую смертность и большую ожидаемую продолжительность жизни. Для этих стран в структуре населения характерны пониженная доля детей и высокий процент пожилых людей.
Ряд авторов придерживается другой классификации типов воспроизводства населения. Например, А. Ландри выделяет три типа воспроизводства населения, присущих соответственно: присваивающей (или архаичной) экономике, аграрному и индустриальному обществу. Каждый тип отличается характером социального контроля над показателями воспроизводства: от архаичного уровня, зависящего от естественного отбора, до полного контроля над рождаемостью и снижения смертности за счет повышения уровня жизни и затрат на здравоохранение в индустриальном обществе.
Показатели воспроизводства используются в демографических моделях в качестве эндогенных. Экзогенные переменные определяются вне модели. Они могут быть как демографическими (длительность пребывания в данном демографическом состоянии — возраст вступления в брак, длительность пребывания в браке, возраст родителей при рождении детей и т.д.), так и недемографическими (биологическими, социально-психологическими, экономическими и т.п.). Экзогенными переменными демографических моделей чаще всего являются переменные, полученные из данных официальной статистики.
Система соотношений между эндогенными и экзогенными переменными в демографических моделях может непосредственно вытекать из смысла переменных и представлять собой результат качественного анализа объекта моделирования; отражать некоторый содержательный вывод о характере протекания демографических процессов или являться результатом анализа методами математической статистики (регрессии, корреляции, факторного анализа и др.).
Наряду с чисто демографическими большое распространение получили демоэкономические модели, устанавливающие взаимосвязь роста населения и экономического роста.
В зависимости от типа модели система соотношений между ее переменными задается в виде систем математических уравнений, числовых таблиц или правил, по которым одни переменные определяются на основе других.
Придав переменным модели конкретные числовые значения, соответствующие определенному населению на некотором этапе его развития, получают модель конкретного населения. Модели, значения переменных которых отражают закономерности не какого-либо определенного населения, а любого населения либо населения с некоторыми установившимися свойствами, являются типовыми. Примером типовых моделей являются типовые демографические таблицы рождаемости и смертности.
Различают демографические макромодели, описывающие демографические процессы на уровне всего населения или отдельных его частей (модели распределений), и микромодели, отражающие демографические процессы на уровне индивида или семьи через последовательность демографических процессов в его жизни или в жизни Других демографических единиц (модели состояний). Макромодели описываются распределением индивидов в соответствии с заданным набором демографических признаков. Микромодели характеризуются демографическим состоянием отдельного индивида (вступление в брак, рождение детей, смерть одного из супругов и т.д.).
Модели воспроизводства населения.Для анализа и прогнозирования половозрастного состава населения используют модели воспроизводства населения в непрерывном и дискретном видах. Непрерывные модели служат для анализа общих закономерностей динамики развития населения, дискретные (чаще с годовым временным интервалом) — для практических расчетов.
Простейшие модели воспроизводства населения — модели роста — рассматривают население в целом. Исходные данные задаются без возрастного различия рождаемости и смертности — в виде общих показателей прироста населения, например коэффициента естественного прироста населения как отношения разности числа рождений и смертей к численности населения на середину рассматриваемого периода (рис. 1).
К моделям, учитывающим половозрастную структуру населения, относятся дискретные матричные модели воспроизводства населения и интегральное уравнение воспроизводства населения (непрерывная модель).
Эти модели основываются на следующих трех принципах:
• Все население разбивается на группы по половому и возрастному отличию (используются данные переписей населения)
• Переход совокупности индивидов в следующую возрастную группу осуществляется с некоторым коэффициентом, равным вероятности дожития до следующей возрастной категории
• Число рождений считается как сумма рождений в каждой репродуктивной возрастной группе.
Рис. 1 Коэффициент естественного прироста населения России
За основу моделей принимают изменение возрастного состава женской части населения. Данные по мужской части населения рассчитываются как вторичные, исходя из соотношений женского и мужского населения.
Матричные модели воспроизводства населения строятся на основе демографических таблиц смертности и рождаемости. Таблицы составляются по данным переписи населения и статистики ЗАГСов и представляют собой систему коэффициентов, определяющих динамику демографического состояния населения.
Таблицы рождаемости строятся на общих, специальных и частных коэффициентах рождаемости в промилле (в тысячных долях) за определенный отрезок времени. Общие коэффициенты определяют число рождений по отношению к общей численности населения, специальные иллюстрируют число рождений отдельно по женщинам и мужчинам репродуктивного возраста, частные коэффициенты определяют число рождений у отдельных репродуктивных групп населения и накопленное число рождений у женщин, достигших определенного возраста (кумулятивный коэффициент). Пример коэффициентов рождаемости в России у женщин приведен в таблице 7
Таблица 7
Коэффициенты рождаемости в России за 1997 год у женщин (в промилле)[7]. (Общий коэффициент рождаемости составил 13,4)
Возрастной интервал в годах | Коэффициент рождений в возрастном интервале | Кумулятивный коэффициент рождений |
15-19 | ||
20-24 | ||
25-29 | ||
30-34 | ||
35-39 | ||
40-44 | ||
45-49 |
Коэффициенты смертности рассчитываются по отношению ко всему населению и отдельно по каждой половозрастной группе. Таблица 8 иллюстрирует коэффициенты смертности в России по регионам на 1000 населения. Коэффициенты дожития определяют вычитанием из тысячи коэффициента смертности.
Коэффициенты рождаемости и дожития служат коэффициентами матричных моделей воспроизводства населения:
V̅M = A× V̅t +α S̅t, (22)
где V̅t — вектор численностей женских возрастных групп на начало периода t;
A — матрица, первая строка которой содержит вероятности рождений девочек у женщин по возрастным группам в течение одного периода времени, нижние строки представляют собой диагональную матрицу коэффициентов перехода в следующую возрастную группу (кроме последней), к которой справа приписан нулевой столбец;
S̅t — вектор, последний элемент которого равен численности последней возрастной группы женщин на начало периода t, все остальные элементы нулевые. Появляется в связи с отсутствием правой границы в последней возрастной группе;
a — коэффициент дожития женщин последней возрастной группы до следующего временного периода.
Учитывая, что S̅t = Е*×V̅t, где элементы матрицы Е* представлены нулями за исключением элемента на пересечении последнего столбца и последней строки, который равен единице, формулу (22) можно записать в виде
Если социально-экономические условия общества не изменяются, то матрица А и коэффициент а ( для всех рассматриваемых периодов времени остаются постоянными (режим воспроизводства остается прежним):
.
Соответственно, при изменении социально-экономических условий в обществе расчет демографического состояния населения на каждом последующем этапе должен осуществляться с изменением матрицы А и коэффициента a. Прогноз изменения коэффициентов можно осуществить на основе классического статистического анализа. Для более детального изучения проблемы воспроизводства населения анализируют данные состояний брачности и разводимости, оказывающие существенное влияние на показатели рождаемости и смертности.
Таблица 8