Пора разбираться с космическим "мусором"
Расчеты и опыт прекращения существования предыдущих космических станций существенно меньшей размерности указывают на невозможность экологически безопасного прекращения существования станции "МИР" (имеющей массу более 120 т) при планируемой ликвидации "затоплением": высок риск опасных последствий для наземных объектов при падении ее фрагментов.
Уместно напомнить примеры реализации опасных сценариев: известные факты падения обломков крупной орбитальной станции "Скайлэб" (США) в 1979 г. в Индийский океан и на территорию Австралии после входа в плотные слои атмосферы, а также схода с орбиты и прекращения существования орбитальной станции "Салют-7" (СССР) в 1992 г.
Известно, что крупные объекты сгорают неполностью, их фрагменты достигают поверхности Земли. Таким образом, прекращение существования крупных космических аппаратов представляет серъезную и сложную экологическую проблему, поскольку:
1) при их сгорании в атмосфере осуществляется ее загрязнение на больших высотах;
2) при выпадении несгоревших фрагментов на поверхность Земли возможно нанесение экологического ущерба (как напрямую. - пожар при падении в лес, так и косвенно, через поражение потенциально опасных техногенных объектов - химических предприятий, хранилищ топлива и т. п., а также возможное падение на крупные населенные пункты).
В конце февраля 1999 г. на орбиту вышел американский искусственный спутник "ARGOS" ("Advanced Research and Global Observation Satellite"), на который, в частности, возложена не совсем обычная задача: находящийся на его борту прибор SPADUS предназначен для измерения массы, скорости и определения траекторий космических частиц, размеры которых слишком малы для наблюдения наземными средствами. Этот прибор по заказу НАСА
США был специально разработан в Чикагском университете под руководством Дж.Симпсона (J.Simpson).
Поступающие от спутника данные позволят ученым отличать космический "мусор", порожденный человеческой деятельностью, от естественной пыли, мелких обломков комет и других небесных объектов. Это будет эффективно способствовать созданию условий, безопасных для пилотируемых и непилотируемых полетов в околоземном пространстве.
Спутник "ARGOS" должен проработать на орбите около трех лет.
Гидрометеорология.
Более половины поверхности планеты остается "белым пятном" для наземных средств метеорологии. Спутники обеспечивают получение данных в глобальном масштабе. В нашей стране метеорологическая космическая система функционирует с 1967 г. в составе 2-3 космических аппаратов типа "Метеор" на средневысотной (900-1200 км) орбите. В настоящее время завершены работы по разработке геостационарного КА гидрометеорологического назначения "Электро", с 1994 г. проводятся его летные испытания.
С помощью метеорологических спутников решаются задачи:
- краткосрочного и долгосрочного прогнозирования погоды;
- контроля опасных погодных явлений (ливней, циклонов, тайфунов, ураганов и др.) и предупреждения об их приближении;
- контроля климатообразующих факторов и мониторинга глобальных изменений, происходящих на Земле;
- контроля радиоционной и геофизической обстановки в околоземном космическом пространстве в интересах безопасности полетов, устойчивой радиосвязи, здоровья людей.
По результатам наблюдений с метеоспутников определяются необходимые для прогноза погоды и выполнения ряда программ исследования Земли параметры (распределение облачности, вертикальные профили температуры и влажности, распределение и общее содержание озона, плотности потоков ионизирующих излучений и др.), характеризующие состояние атмосферы и подстилающей поверхности. Космическая гидрометеорологическая информация позволяет сократить убытки в хозяйственной деятельности за счет повышения достоверности прогнозов погоды и уменьшить количество жертв и материальный ущерб от опасных погодных явлений за счет своевременного предупреждения об их приближении.
Программа научно-технических исследованийпо созданию системы защиты Земли от столкновений с опасными космическими объектами.
В последние годы у мировой общественности и в научных кругах проявляется значительный интерес к проблеме предотвращения столкновений с Землей крупных космических тел (астероидов, комет). Подобные столкновения могут привести как к локальным катастрофическим явлениям, так и к глобальной катастрофе. Падение на Землю метеорита типа Тунгусского, при современной насыщенности мира опасными производствами, может привести к материальным потерям на миллиарды долларов. Столкновение с астероидами более крупных размеров - диаметром порядка 1 км - угрожает существованию цивилизации в целом. По существующим в настоящее время оценкам, несмотря на малую вероятность падения астероидов на Землю, вероятность риска гибели индивидуума в результате столкновения сравнима с вероятностью гибели в авиакатастрофе, от землетрясения или урагана. Все это выдвигает проблему защиты Земли от подобных столкновений в ряд актуальных для современного мира.
Создание системы защиты Земли (СЗЗ) от столкновения с опасными космическими объектами (ОКО) приведет к решению целого ряда дополнительных задач:
- в результате исследований будет получен уникальный объем научной информации об астероидах - важнейших объектах Солнечной системы, имеющих большое значение для космического будущего человечества, будет накоплен уникальный опыт мирного интернационального сотрудничества в области, имеющей непосредственное отношение к военным технологиям;
- впервые в истории человеческого общества большие финансовые и материальные средства будут сосредоточены не на решении военных задач, а на решении мирной проблемы, имеющей общемировое значение;
- полученные в ходе реализации столь крупного проекта технические решения будут способствовать сохранению и дальнейшему прогрессу цивилизации.
При взаимодействии астероидов и комет с атмосферой Земли происходит образование воздушной ударной волны. Температура на фронте волны столь высока, что с его поверхности излучается тепловой поток большой мощности. В результате взаимодействия астероида или кометы с атмосферой происходит его разрушение на отдельные фрагменты и абляция этих фрагментов. При небольших размерах ОКО происходит полное сгорание ОКО или его фрагментов в верхних слоях атмосферы. Начиная с некоторых минимальных размеров ОКО и в зависимости от типа ОКО и скорости соударения, разрушение происходит вблизи поверхности Земли и имеет характер взрыва. При этом возможны существенные разрушения на поверхности Земли и образование крупномасштабных пожаров. При еще больших размерах фрагменты ОКО достигают поверхности Земли и производят удар по ней. В результате образуется кратер, масса грунта выбрасывается в атмосферу, приводя к ее запылению, в результате чего возможны долговременные или даже катастрофические изменения климата.
При ударе о грунт возникает мощная сейсмическая волна, при ударе о воду возможно образование цунами.
Столкновение с очень крупным метеорным телом может привести к полной гибели цивилизации на Земле.Большое число химических заводов, атомных электростанций и других объектов, разрушение которых приведет к региональной катастрофе. В связи с этим все большее внимание уделяется изучению падения тел "средних размеров". Такие тела падают на Землю не часто - примерно один раз в 100 - 300 лет.
Собственно для перехвата ОКО необходимо доставить средства воздействия к его поверхности. В качестве средств доставки могут использоваться существующие либо специально созданные ракетно-космические системы. В зависимости от типа средств воздействия и их габаритно-массовых характеристик требования к средствам доставки могут превысить достигнутые в существующих ракетных системах параметры. Это приводит к необходимости рассмотрения перспективных систем, в частности, перспективных двигательных установок - ядерных, электроядерных и т.п.
Сближение и взаимодействие с ОКО может происходить на скоростях , существенно превышающих скорости, типичные для военных систем. При этом возникает задача создания надежной автоматики, обеспечивающей наведение, сближение и заданный режим воздействия на ОКО.
Собственно воздействие на ОКО может быть произведено с помощью ядерного взрыва вблизи его поверхности, кинетического удара о поверхность ОКО большой массы, либо воздействием излучений от мощных источников энергии, например, лазерного излучения. Под действием взрыва (удара) часть вещества ОКО испаряется. В результате разлета испаренного вещества в теле ОКО распространяется ударная волна. Это приводит к выбросу вещества с поверхности ОКО и разрушению (дроблению) самого ОКО или его части. При этом возможно два варианта результата воздействия:
- изменение траектории ОКО под действием импульса, уносимого выброшенным веществом ОКО (мягкое воздействие);
- дробление ОКО на фрагменты, которые по мере сближения с Землей расходятся в пространстве и сгорают в верхних слоях атмосферы (сильное воздействие).
В зависимости от высоты взрыва над поверхностью ОКО меняется степень воздействия. При заглубленном взрыве в теле ОКО достигается максимальное для данной мощности воздействие. Таким образом, возникают задачи:
- определения импульса, уносимого веществом ОКО, при взрывах (ударах) различной мощности (массы и скорости);
- определения степени и характера разрушения ОКО при взрывах (ударах) различной мощности (массы и скорости);
- рассмотрения способов заглубления ядерных взрывных устройств в тело ОКО.
При создании СЗЗ необходимо также учитывать возможные экологические последствия, которые возникнут как в результате производства и отработки элементов системы, так и при ее функционировании.
Освоение космоса.
Освоение Луны.
Масштабной задачей индустриализации космоса является разработка в перспективе природных ресурсов Луны. Исследования лунного грунта с помощью автоматических и пилотируемых аппаратов показали, что недра Луны богаты железом, алюминием, марганцем, хромом, титаном и другими редкими металлами. На Луне достаточно кислорода, содержащегося в связанном виде окислах металлов и кремния. Специфические условия на лунной поверхности (вакуум, небольшая сила тяжести) позволяют организовать на базе радикально новой технологии производство различных металлов, ситаллов и специальных стекол, порошковых строительных материалов.
Продукция лунного комплекса на 90% обеспечит потребности в материалах, необходимых для строительства околоземных спутниковых солнечных электростанций. При этом энергоемкость доставки грузов с поверхности Луны в космос значительно меньше, чем с Земли, - ведь скорости освобождения для Луны и Земли различаются в 5 раз (соответственно 2,36 и 11,2 км/с), к тому же на Луне отсутствует атмосфера.
Промышленное освоение Луны - задача дальней перспективы. А пока обсуждается вопрос о возможности создания на Луне в начале XXI веке постоянной исследовательской базы, подобной станции в Антарктиде. Для транспортного обеспечения лунного форпоста потребуется применение тяжелого носителя. Специалисты считают целесообразным вести работы по этой программе при широком международном сотрудничестве.
Двигатели для полета на дальние планеты.
Современные химические двигатели неэффективны для полетов к дальним планетам нашей Солнечной системы. В будущем предполагается использовать космические корабли с ядерными и термоядерными двигателями. Ядерные двигатели работают за счет энергии, полученной в результате взрывов большого числа ядерных зарядов сравнительно малой мощности или более эффективных термоядерных зарядов.
Недостаток этого двигателя - засорение пространства радиоактивными осколками, образующимися при ядерном взрыве. Вот почему их использование предполагается для полетов вдали от Земли и оживленных космических трасс.
Идея термоядерного двигателя заключена в использовании для термоядерного синтеза водорода, который захватывается из межпланетной среды вместе с потоком частиц, разгоняемых в двигателе.
Скорости термоядерных двигателей (1000 км/с) сделают доступными для пилотируемых полетов даже самые дальние планеты Солнечной системы
Существуют и другие проекты, например передача энергии к космическому кораблю по лазерному лучу. .