Влияние температуры и суть закона М.Ламотта, значение света и закон Хопкинса.
Температура— важнейший из ограничивающих (лимитирующих) факторов. Пределами толерантности для любого вида являются максимальная иминимальная летальные температуры, за пределами которых вид смертельно поражают жара или холод (рис. 2.3). Если не принимать во внимание некоторые уникальные исключения, все живые существа способны жить при температуре между 0 и 50 °С, что обусловлено свойствами протоплазмы клеток.
На рис. 2.3 показаны температурные пределы жизни видовой группы, популяции. В «оптимальном интервале» организмы чувствуют себя комфортно, активно размножаются и численность популяции растет. К граничным участкам температурного предела жизни — «пониженной жизнедеятельности» — организмы чувствуют себя угнетенно. При дальнейшем похолодании в пределах «нижней границы стойкости» или увеличении жары в пределах «верхней границы стойкости» организмы попадают в «зону смерти» и погибают.
Этим примером иллюстрируется общий закон биологической стойкости(по Ламотту), применимый к любому из важных лимитирующих факторов. Величина «оптимального интервала» характеризует «величину» стойкости организмов, т. е. величину их толерантности к этому фактору, или «экологическую валентность».
Адаптационные процессы у животных по отношению к температуре привели к появлению пойкилотермных и гомой-отермных животных. Подавляющее большинство животных являются пойкилотермными, т. е. температура их собственного тела меняется с изменением температуры окружающей среды: земноводные, пресмыкающиеся, насекомые и др. Значительно меньшая часть животных — гомойотермные, т. е. имеют постоянную температуру тела, независимую от температуры внешней среды: млекопитающие (в том числе и человек), имеющие температуру тела 36—37 °С, и птицы с температурой тела 40 °С.
Активную жизнь при температуре ниже нуля могут вести только гомойотермные животные. Пойкилотермные хотя выдерживают температуру значительно ниже нуля, но при этом теряют подвижность. Температура порядка 40 °С, т. е. даже ниже температуры свертывания белка, для большинства животных предельна.
Не меньшее значение температура играет в жизни растений. При повышении температуры на 10 ° С интенсивность фотосинтеза увеличивается в два раза, но лишь до 30—35 °С, затем его интенсивность падает, и при 40—45 °С фотосинтез вообще прекращается. При 50 °С большинство наземных растений погибает, что связано с интенсификацией дыхания растений при повышении температуры, а затем его прекращения при 50 °С.
Температура влияет и на ход корневого питания у растений: этот процесс возможен лишь при условии, когда температура почвы на всасывающих участках на несколько градусов ниже температуры наземной части растения. Нарушение этого равновесия влечет за собой угнетение жизнедеятельности растения и даже его гибель.
Известны морфологическиеприспособления растений к низким температурам, так называемые жизненные формы растений, которые, например, можно выделить по положению почек возобновления растительных видов по отношению к поверхности почвы и к защите, которую они получают от снежного покрова, лесной подстилки, слоя почвы и т. п. Вот некоторые из форм (по Раункеру): эпифиты — растут на других растениях и не имеют корней в почве; фанерофиты(деревья, кустарники, лианы) — их почки остаются над поверхностью снега и нуждаются в защите покровными чешуйками; криптофиты, или геофиты, теряют всю видимую растительную массу и прячут свои почки в клубнях, луковицах или корневищах, скрытых в почве; терофиты — однолетние растения, отмирающие с наступлением неблагоприятного сезона, выживают лишь их семена или споры.
Морфологические адаптации к климатическим условиям жизни, и прежде всего к температурным, наблюдаются также у животных. Жизненные формы животныходного вида, например, могут сформироваться под воздействием низких температур, от -20 до -40 °С, при которых они вынуждены накапливать питательные вещества и увеличивать массу тела: из всех тигров самый крупный амурский тигр, живущий в наиболее северных и суровых условиях. Эта закономерность именуется правилом Бергмана: у теплокровных животных размер тела особей в среднем больше у популяций, живущих в более холодных частях ареала распространения вида.
Но в жизни животных гораздо большее значение имеют физиологические адаптации,простейшей из которых является акклиматизация — физиологическое приспособление к перенесению жары или холода. Например, борьба с перегревом путем увеличения испарения, борьба с охлаждением у пойки-лотермных животных путем частичного обезвоживания своего тела или накопления специальных веществ, понижающих точку замерзания, у гомойотермных — за счет изменения обмена веществ.
Существуют и более радикальные формы защиты от холода — миграция в более теплые края (перелеты птиц; высокогорные серны на зиму переходят на более низкие высоты, и др.), зимовка — впадение в спячку на зимний период (сурок, белка, бурый медведь, летучие мыши: они способны понижать температуру своего тела почти до нуля, замедляя метаболизм и, тем самым, трату питательных веществ).
Большинство животных зимой находится в неактивном состоянии, а насекомые — вообще в неподвижном, остановившись в своем развитии. Это явление называют диапаузой, и она может наступать на разных стадиях развития насекомых — яйца, личинки, куколки и даже на стадии взрослой особи (бабочки, например).
Но многие организмы умеренных широт в этот период ведут активный образ жизни (волки, олени, зайцы и др.), а некоторые даже размножаются (королевские пингвины и др.).
Таким образом, температура, являясь важнейшим лимитирующим фактором, оказывает весьма существенное влияние на адаптационные процессы в организмах и популяциях наземновоздушной среды.
Свет— это первичный источник энергии, без которого невозможна жизнь на Земле. Он участвует в фотосинтезе, обеспечивая создание растительностью Земли органических соединений из неорганических , и в этом его важнейшая энергетическая функция. Но в фотосинтезе участвует лишь часть спектра в пределах от 380 до 760 нм, которую называют областью физиологически активной радиации (ФАР). Внутри нее для фотосинтеза наибольшее значение имеют красно-оранжевые лучи (600—700 нм) и фиолетово-голубые (400—500 нм), наименьшее — желто-зеленые (500—600 нм). Последние отражаются, что и придает хлорофиллоносным растениям зеленую окраску.
Однако свет не только энергетический ресурс, но и важнейший экологический фактор, весьма существенно влияющий на биоту в целом и на адаптационные процессы и явления в организмах.
За пределами видимого спектра и ФАР остаются инфракрасная (ИК) и ультрафиолетовая (УФ) области. УФ-излучение несет много энергии и обладает фотохимическим воздействием — организмы к нему очень чувствительны. ИК-излучение обладает значительно меньшей энергией, легко поглощается водой, но некоторые сухопутные организмы используют его для поднятия температуры тела выше окружающей.
Важное значение для организмов имеет интенсивность освещения. Растения по отношению к освещенности подразделяются на светолюбивые(гелиофиты), тенелюбивые (сциофиты) и теневыносливые.
Первые две группы обладают разными диапазонами толерантности в пределах экологического спектра освещенности. Яркий солнечный свет — оптимумгелиофитов (луговые травы, хлебные злаки, сорняки и др.), слабая освещенность — оптимум тенелюбивых (растения таежных ельников, лесостепных дубрав, тропических лесов). Первые не выносят тени, вторые — яркого солнечного света.
Теневыносливые растения имеют широкий диапазон толерантности к свету и могут развиваться как при яркой освещенности, так и в тени.
Свет имеет большое сигнальное значение и вызывает орные адаптации организмов. Одним из самых надежных сигналов, регулирующих активность организмов во времени, является длина дня — фотопериод.
фотопериодизм как явление — это реакция организма на сезонные изменения длины дня. Длина дня в данном месте, в данное время года всегда одинакова, что позволяет растению и животному определиться на данной широте со временем года, т. е. временем начала цветения, созревания и т. п. Иными словами, фотопериод — это некое «реле времени», или «пусковой механизм», включающий последовательность физиологических процессов в живом организме.
Фотопериодизм нельзя отождествлять с обычными внешними суточными ритмами, обусловленными просто сменой дня и ночи. Однако суточная цикличность жизнедеятельности у животных и человека переходит во врожденные свойства вида, т. е. становится внутренними (эндогенными) ритмами. Но в отличие от изначально внутренних ритмов их продолжительность может не совпадать с точной цифрой — 24 часа — на 15— 20 минут, и в связи с этим, такие ритмы называют циркадны-ми (в переводе — близкие к суткам).
Эти ритмы помогают организму чувствовать время, и эту способность называют «биологическими часами». Они помогают птицам при перелетах ориентироваться по солнцу и вообще ориентируют организмы в более сложных ритмах природы.
Фотопериодизм, хотя и наследственно закреплен, проявляется лишь в сочетании с другими факторами, например температурой: если в день X холодно, то растение зацветает позже, или в случае с вызреванием — если холод наступает раньше дня X, то, скажем, картофель дает низкий урожай, и т. п. В субтропической и тропической зоне, где длина дня по сезонам года меняется мало, фотопериод не может служить важным экологическим фактором — на смену ему приходит чередование засушливых и дождливых сезонов, а в высокогорье главным сигнальным фактором становится температура.
Так же, как на растениях, погодные условия отражаются на пойкилотермных животных, а гомойотермные отвечают на это изменениями в своем поведении: изменяются сроки гнездования, миграции и др.
Человек научился использовать описанные выше явления.
Длину светового дня можно изменять искусственно, тем самым изменяя сроки цветения и плодоношения растений (выращивание рассады еще в зимний период и даже плодов в теплицах), увеличивая яйценоскость кур, и др.
Развитие живой природы по сезонам года происходит в соответствии сбиоклиматическим законом,который носит имя Хопкинса: сроки наступления различных сезонных явлений (фе-нодат) зависят от широты, долготы местности и ее высоты над уровнем моря. Значит, чем севернее, восточнее и выше местность, тем позже наступает весна и раньше осень. Для Европы на каждом градусе широты сроки сезонных событий наступают через три дня, в Северной Америке — в среднем через четыре дня на каждый градус широты, на пять градусов долготы и на 120 м высоты над уровнем моря.
Знание фенодат имеет большое значение для планирования различных сельхозработ и других хозяйственных мероприятий.