Старый принцип на новом источнике
Выработка электроэнергии требует более высокой температуры гидроисточника, чем для отопления, — более 150°C. Принцип работы геотермальной электростанции (ГеоЭС) сходен с принципом работы обычной тепловой электростанции (ТЭС). По сути, геотермальная электростанция — разновидность ТЭС.
Рис.. Принципиальная схема работы тепловой электростанции. |
На ТЭС в роли первичного источника энергии выступают, как правило, уголь, газ или мазут, а рабочим телом служит водяной пар. Топливо, сгорая, нагревает воду до состояния пара, который вращает паровую турбину, а она генерирует электричество.
Отличие ГеоЭС состоит в том, что первичный источник энергии здесь — тепло земных недр и рабочее тело в виде пара поступает на лопасти турбины электрогенератора в «готовом» виде прямо из добывающей скважины.
Существуют три основные схемы работы ГеоЭС: прямая, с использованием сухого (геотермального) пара; непрямая, на основе гидротермальной воды, и смешанная, или бинарная.
Применение той или иной схемы зависит от агрегатного состояния и температуры энергоносителя.
Самая простая и потому первая из освоенных схем — прямая, в которой пар, поступающий из скважины, пропускается непосредственно через турбину. На сухом пару работала и первая в мире ГеоЭС в Лардерелло в 1904 году.
Рис. Принцип работы ГеоЭС на сухом пару. Геотермальный пар, поступающий из добывающей скважины, пропускается непосредственно через паровую турбину. Самая простая из существующих схем работы ГеоЭС. |
ГеоЭС с непрямой схемой работы в наше время самые распространённые. Они используют горячую подземную воду, которая под высоким давлением нагнетается в испаритель, где часть её выпаривается, а полученный пар вращает турбину. В ряде случаев требуются дополнительные устройства и контуры для очистки геотермальной воды и пара от агрессивных соединений.
Принцип работы ГеоЭС с непрямой схемой. Горячая подземная вода из добывающей скважины нагнетается в испаритель, а полученный пар подаётся в турбину. |
Отработанный пар поступает в скважину нагнетания либо используется для отопления помещений, — в этом случае принцип тот же, что при работе ТЭЦ.
На бинарных ГеоЭС горячая термальная вода взаимодействует с другой жидкостью, выполняющей функции рабочего тела с более низкой температурой кипения. Обе жидкости пропускаются через теплообменник, где термальная вода выпаривает рабочую жидкость, пары которой вращают турбину.
Принцип работы бинарной ГеоЭС Горячая термальная вода взаимодействует с другой жидкостью, выполняющей функции рабочего тела и имеющей менее высокую температуру кипения. Обе жидкости пропускаются через теплообменник, где термальная вода выпаривает рабочую жидкость, пары которой, в свою очередь, вращают турбину |
Эта система замкнута, что решает проблемы выбросов в атмосферу. Кроме того, рабочие жидкости со сравнительно низкой температурой кипения позволяют использовать в качестве первичного источника энергии и не очень горячие термальные воды.
Во всех трёх схемах эксплуатируется гидротермальный источник, но для получения электричества можно использовать и петротермальную энергию.
Принципиальная схема в этом случае также достаточно проста. Необходимо пробурить две соединяющиеся между собою скважины — нагнетательную и эксплуатационную. В нагнетательную скважину закачивается вода. На глубине она нагревается, затем нагретая вода или образовавшийся в результате сильного нагрева пар по эксплуатационной скважине подаётся на поверхность. Далее всё зависит от того, как используется петротермальная энергия — для отопления или для производства электроэнергии. Возможен замкнутый цикл с закачиванием отработанного пара и воды обратно в нагнетательную скважину либо другой способ утилизации.
Схема работы петротермальной системы. Система основана на использовании температурного градиента между поверхностью земли и её недрами, где температура выше. Вода с поверхности закачивается в нагнетательную скважину и нагревается на глубине, далее нагретая вода или образовавшийся в результате нагрева пар подаются на поверхность по эксплуатационной скважине. |
Недостаток такой системы очевиден: для получения достаточно высокой температуры рабочей жидкости нужно бурить скважины на большую глубину. А это серьёзные затраты и риск существенных потерь тепла при движении флюида вверх. Поэтому петротермальные системы пока менее распространены по сравнению с гидротермальными, хотя потенциал петротермальной энергетики на порядки выше.
В настоящее время лидер в создании так называемых петротермальных циркуляционных систем (ПЦС) — Австралия. Кроме того, это направление геотермальной энергетики активно развивается в США, Швейцарии, Великобритании, Японии.