Освоения содержания курса геометрии

Изучение курса геометрии по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного стандарта основного общего образования.

Личностные результаты:

1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

4) умение контролировать процесс и результат учебной и математической деятельности;

5) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

3) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

4) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

5) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

6) компетентность в области использования информационно-коммуникационных технологий;

7) первоначальные представления об идеях и о методах математики как об универсальном языке науки и технике, о средстве моделирования явлений и процессов;

8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

9) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

10) умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

11) умение выдвигать гипотезы при решении задачи понимать необходимость их проверки;

12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

1) осознание значения геометрии для повседневной жизни человека;

2) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

3) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую ин­формацию), точно и грамотно выражать свои мысли с применением математической терминологии и симво­лики, проводить классификации, логические обоснова­ния;

4) владение базовым понятийным аппаратом по основным разделам содержания;

5) систематические знания о фигурах и их свойствах;

6) практически значимые геометрические умения и навы­ки, умение применять их к решению геометрических и негеометрических задач, а именно:

• изображать фигуры на плоскости;

• использовать геометрический язык для описания предметов окружающего мира;

• измерять длины отрезков, величины углов, вычис­лять площади фигур;

• распознавать и изображать равные, симметричные и подобные фигуры;

• выполнять построения геометрических фигур с по­мощью циркуля и линейки;

• читать и использовать информацию, представлен­ную на чертежах, схемах;

• проводить практические расчёты.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Четырехугольники (22 часа).

Четырехугольники и его элементы. Параллелограмм. Свойства параллелограмма. Признаки параллелограмма. Прямоугольник. Ромб. Квадрат. Средняя линия треугольника. Трапеция. Центральные и вписанные углы. Описанная и вписанная окружности четырехугольника.

Подобие треугольников (16 часов).

Теорема Фалеса. Теорема о пропорциональных отрезках. Подобные треугольники. Первый признак подобия треугольников. Второй и третий признаки подобия треугольников.

Решение прямоугольных треугольников (14 часов).

Метрические соотношения в прямоугольном треугольнике. Теорема Пифагора. Тригонометрические функции острого угла прямоугольного треугольника. Решение прямоугольных треугольников.

Многоугольники. Площадь многоугольника (10 часов).

Многоугольники. Понятие площади многоугольника. Площадь прямоугольника. Площадь параллелограмма. Площадь треугольника. Площадь трапеции.

Повторение и систематизация учебного материала (6 часов).

Учебно-тематическое планирование

№п/п Название темы Кол-во часов Кол-во самостоятельных работ Кол-во тестирований Кол-во контрольных работ
Четырехугольники
Подобие треугольников
Решение прямоугольных треугольников
Многоугольники. Площадь многоугольника
Повторение и систематизация учебного материала - -
ИТОГО:

Планируемые результаты обучения геометрии в 8 классе

В результате изучения курса геометрии в 8 классе ученик:

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• классифицировать геометрические фигуры;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• доказывать теоремы;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов.

Наши рекомендации