I. Нахождение суммы кредита.

II. Вычисление процентной ставки по кредиту

III. Нахождение количества лет выплаты кредита(срока кредитования)

IV. Применение математического анализа при решении экономических задач

V. Нахождение ежегодного транша.

VI. Другие задачи

Предлагаю Вам самостоятельно:

1. Определить тип задачи и выбрать метод решения

2. Построение математической модели и получение результата.

1.1 июня 2013 года Все­во­лод Яро­сла­во­вич взял в банке 900000 руб­лей в кре­дит. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая — 1 числа каж­до­го сле­ду­ю­ще­го ме­ся­ца банк на­чис­ля­ет 1 про­цент на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 1%), затем Все­во­лод Яро­сла­во­вич пе­ре­во­дит в банк платёж. На какое ми­ни­маль­ное ко­ли­че­ство ме­ся­цев Все­во­лод Яро­сла­во­вич может взять кре­дит, чтобы еже­ме­сяч­ные вы­пла­ты были не более 300000 руб­лей?

2.Алек­сей при­обрёл цен­ную бу­ма­гу за 8 тыс. руб­лей. Цена бу­ма­ги каж­дый год воз­рас­та­ет на 1 тыс. руб­лей. В любой мо­мент Алек­сей может про­дать бу­ма­гу и по­ло­жить вы­ру­чен­ные день­ги на бан­ков­ский счёт. Каж­дый год сумма на счёте будет уве­ли­чи­вать­ся на 8%. В те­че­ние ка­ко­го года после по­куп­ки Алек­сей дол­жен про­дать цен­ную бу­ма­гу, чтобы через два­дцать пять лет после по­куп­ки этой бу­ма­ги сумма на бан­ков­ском счёте была наи­боль­шей?

3. 15-го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на 19 ме­ся­цев. Усло­вия его воз­вра­та та­ко­вы:

— 1-го числа каж­до­го ме­ся­ца долг воз­растёт на r% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

— со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

— 15-го числа каж­до­го ме­ся­ца долг дол­жен быть на одну и ту же сумму мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца. Из­вест­но, что общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та 30% боль­ше суммы, взя­той в кре­дит. Най­ди­те r.

4. 31 де­каб­ря 2014 года Ти­мо­фей взял в банке 7 007 000 руб­лей в кре­дит под 20% го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 20%), затем Ти­мо­фей пе­ре­во­дит в банк платёж. Весь долг Ти­мо­фей вы­пла­тил за 3 рав­ных пла­те­жа. На сколь­ко руб­лей мень­ше он бы отдал банку, если бы смог вы­пла­тить долг за 2 рав­ных пла­те­жа?

5. Са­ве­лий хочет взять в кре­дит 1,4 млн руб­лей. По­га­ше­ние кре­ди­та про­ис­хо­дит раз в год рав­ны­ми сум­ма­ми (кроме, может быть, по­след­ней) после на­чис­ле­ния про­цен­тов. Став­ка про­цен­та 10% го­до­вых. На какое ми­ни­маль­ное ко­ли­че­ство лет может Са­ве­лий взять кре­дит, чтобы еже­год­ные вы­пла­ты были не более 330 тысяч руб­лей?

6.Алек­сей взял кре­дит в банке на срок 12 ме­ся­цев. По до­го­во­ру Алек­сей дол­жен вер­нуть кре­дит еже­ме­сяч­ны­ми пла­те­жа­ми. В конце каж­до­го ме­ся­ца к остав­шей­ся сумме долга до­бав­ля­ет­ся r % этой суммы и своим еже­ме­сяч­ным пла­те­жом Алек­сей по­га­ша­ет эти до­бав­лен­ные про­цен­ты и умень­ша­ет сумму долга. Еже­ме­сяч­ные пла­те­жи под­би­ра­ют­ся так, чтобы долг умень­шал­ся на одну и ту же ве­ли­чи­ну каж­дый месяц (на прак­ти­ке такая схема на­зы­ва­ет­ся «схе­мой с диф­фе­рен­ци­ро­ван­ны­ми пла­те­жа­ми»). Из­вест­но, что общая сумма, вы­пла­чен­ная Алек­се­ем банку за весь срок кре­ди­то­ва­ния, ока­за­лась на 13 % боль­ше, чем сумма, взя­тая им в кре­дит. Най­ди­те r.

7. 15-го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на 39 ме­ся­цев. Усло­вия его воз­вра­та та­ко­вы:

— 1-го числа каж­до­го ме­ся­ца долг воз­растёт на r% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

— со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

— 15-го числа каж­до­го ме­ся­ца долг дол­жен быть на одну и ту же сумму мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца. Из­вест­но, что общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та на 20% боль­ше суммы, взя­той в кре­дит. Най­ди­те r.

8. Из­вест­но, что вклад, на­хо­дя­щий­ся в банке с на­ча­ла года, воз­рас­та­ет к концу года на опре­де­лен­ный про­цент, свой для каж­до­го банка. В на­ча­ле года Сте­пан по­ло­жил 60% не­ко­то­рой суммы денег в пер­вый банк, а остав­шу­ю­ся часть суммы во вто­рой банк. К концу года сумма этих вкла­дов стала равна 590 000 руб., а к концу сле­ду­ю­ще­го года 701 000 руб. Если бы Сте­пан пер­во­на­чаль­но по­ло­жил 60% своей суммы во вто­рой банк, а остав­шу­ю­ся часть в пер­вый, то по ис­те­че­нии од­но­го года сумма вкла­дов стала бы рав­ной 610 000 руб. Ка­ко­ва была бы сумма вкла­дов в этом слу­чае к концу вто­ро­го года?

9. Граж­да­нин Пет­ров по слу­чаю рож­де­ния сына от­крыл 1 сен­тяб­ря 2008 года в банке счёт, на ко­то­рый он еже­год­но кла­дет 1000 руб­лей. По усло­ви­ям вкла­да банк еже­год­но на­чис­ля­ет 20% на сумму, на­хо­дя­щу­ю­ся на счёте. Через 6 лет у граж­да­ни­на Пет­ро­ва ро­ди­лась дочь, и 1 сен­тяб­ря 2014 года он от­крыл в дру­гом банке счёт, на ко­то­рый еже­год­но кладёт по 2200 руб­лей, а банк на­чис­ля­ет 44% в год. В каком году после оче­ред­но­го по­пол­не­ния суммы вкла­дов срав­ня­ют­ся, если день­ги со сче­тов не сни­ма­ют?

10.В на­ча­ле года 5/6 не­ко­то­рой суммы денег вло­жи­ли в банк А, а то, что оста­лось — в банк Б. Если вклад на­хо­дит­ся в банке с на­ча­ла года, то к концу года он воз­рас­та­ет на опре­делённый про­цент, ве­ли­чи­на ко­то­ро­го за­ви­сит от банка. Из­вест­но, что к концу пер­во­го года сумма вкла­дов стала равна 670 у.е., к концу сле­ду­ю­ще­го — 749 у.е. Если пер­во­на­чаль­но 5/6 суммы было бы вло­же­но в банк Б, а остав­шу­ю­ся вло­жи­ли бы в банк А, то по ис­те­че­нии од­но­го года сумма вы­рос­ла бы до 710 у.е. Опре­де­ли­те сумму вкла­дов по ис­те­че­нии вто­ро­го года в этом слу­чае.

11. Алек­сей взял кре­дит в банке на срок 17 ме­ся­цев. По до­го­во­ру Алек­сей дол­жен вер­нуть кре­дит еже­ме­сяч­ны­ми пла­те­жа­ми. В конце каж­до­го ме­ся­ца к остав­шей­ся сумме долга до­бав­ля­ет­ся r % этой суммы и своим еже­ме­сяч­ным пла­те­жом Алек­сей по­га­ша­ет эти до­бав­лен­ные про­цен­ты и умень­ша­ет сумму долга. Еже­ме­сяч­ные пла­те­жи под­би­ра­ют­ся так, чтобы долг умень­шал­ся на одну и ту же ве­ли­чи­ну каж­дый месяц (на прак­ти­ке такая схема на­зы­ва­ет­ся «схе­мой с диф­фе­рен­ци­ро­ван­ны­ми пла­те­жа­ми»). Из­вест­но, что общая сумма, вы­пла­чен­ная Алек­се­ем банку за весь срок кре­ди­то­ва­ния, ока­за­лась на 27 % боль­ше, чем сумма, взя­тая им в кре­дит. Най­ди­те r.

12. Баба Валя, на­ко­пив часть своей пен­сии, ре­ши­ла улуч­шить свое ма­те­ри­аль­ное по­ло­же­ние. Она узна­ла, что в Сбер­бан­ке от пен­си­о­не­ров при­ни­ма­ют вкла­ды под опре­де­лен­ный про­цент го­до­вых и на этих усло­ви­ях внес­ла свои сбе­ре­же­ния в бли­жай­шее от­де­ле­ние Сбер­бан­ка. Но через не­ко­то­рое время со­сед­ка ей рас­ска­за­ла, что не­да­ле­ко от той мест­но­сти, где про­жи­ва­ют пен­си­о­не­ры, есть ком­мер­че­ский банк, в ко­то­ром про­цент го­до­вых для пен­си­о­не­ров-вклад­чи­ков в 20 раз выше, чем в Сбер­бан­ке. Баба Валя не до­ве­ря­ла ком­мер­че­ским бан­кам, но стрем­ле­ние улуч­шить свое ма­те­ри­аль­ное по­ло­же­ние взяло верх. После дол­гих ко­ле­ба­ний и ровно через год после от­кры­тия счета в Сбер­бан­ке Баба Валя сняла по­ло­ви­ну об­ра­зо­вав­шей суммы от ее вкла­да, за­явив: «Такой навар меня не устра­и­ва­ет!» И от­кры­ла счет в том ком­мер­че­ском банке, о ко­то­ром го­во­ри­ла ее со­сед­ка, не теряя на­деж­ды на зна­чи­тель­ное улуч­ше­ние сво­е­го ма­те­ри­аль­но­го бла­го­со­сто­я­ния.

На­деж­ды оправ­да­лись: через год сумма Бабы Вали в ком­мер­че­ском банке пре­вы­си­ла ее пер­во­на­чаль­ные кров­ные сбе­ре­же­ния на 65%. Со­жа­ле­ла Баба Валя, что год назад в Сбер­бан­ке сняла не всю сумму, а лишь по­ло­ви­ну, од­на­ко, по­ду­ма­ла: «А где же мы не те­ря­ли?..»

Ген­ди­рек­тор ком­мер­че­ско­го банка ока­зал­ся хо­ро­шим: не оста­вил Бабу Валю без на­ва­ра!

А каков в Сбер­бан­ке про­цент го­до­вых для пен­си­о­не­ров?

13. Банк под опре­де­лен­ный про­цент при­нял не­ко­то­рую сумму. Через год чет­верть на­коп­лен­ной суммы была снята со счета. Банк уве­ли­чил про­цент го­до­вых на 40 про­цент­ных пунк­тов (то есть уве­ли­чил став­ку а% до (а + 40)%). К концу сле­ду­ю­ще­го года на­коп­лен­ная сумма в 1,44 раза пре­вы­си­ла пер­во­на­чаль­ный вклад. Каков про­цент новых го­до­вых?

14. 15-го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на 39 ме­ся­цев. Усло­вия его воз­вра­та та­ко­вы:

— 1-го числа каж­до­го ме­ся­ца долг воз­растёт на r% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

— со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

— 15-го числа каж­до­го ме­ся­ца долг дол­жен быть на одну и ту же сумму мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца. Из­вест­но, что общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та на 20% боль­ше суммы, взя­той в кре­дит. Най­ди­те r.

15.В 1-е клас­сы по­сту­па­ет 45 че­ло­век: 20 маль­чи­ков и 25 де­во­чек. Их рас­пре­де­ли­ли по двум клас­сам: в одном долж­но по­лу­чить­ся 22 че­ло­ве­ка, а в дру­гом - 23. После рас­пре­де­ле­ния по­счи­та­ли про­цент де­во­чек в каж­дом клас­се и по­лу­чен­ные числа сло­жи­ли. Каким долж­но быть рас­пре­де­ле­ние по клас­сам, чтобы по­лу­чен­ная сумма была наи­боль­шей?

16. Антон яв­ля­ет­ся вла­дель­цем двух за­во­дов в ра­зных го­ро­дах. На за­во­дах про­из­во­дит­ся аб­со­лют­но оди­на­ко­вые то­ва­ры при ис­поль­зо­ва­нии оди­на­ко­вых тех­но­ло­гий. Если ра­бо­чие на одном из за­во­дов тру­дят­ся сум­мар­но t2 часов в не­де­лю, то за эту не­де­лю они про­из­водят t еди­ниц то­ва­ра.

За каж­дый час ра­бо­ты на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, Антон пла­тит ра­бо­че­му 250 руб­лей, а на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, — 200 руб­лей.

Антон готов вы­де­лять 900 000 руб­лей в не­де­лю на опла­ту труда ра­бо­чих. Какое наи­боль­шее ко­ли­че­ство еди­ниц то­ва­ра можно про­из­ве­сти за не­де­лю на этих двух за­во­дах?

17. В 1-е клас­сы по­сту­па­ет 43 че­ло­ве­ка: 23 маль­чи­ка и 20 де­во­чек. Их рас­пре­де­ли­ли по двум клас­сам: в одном долж­но по­лу­чить­ся 22 че­ло­ве­ка, а в дру­гом ? 21. После рас­пре­де­ле­ния по­счи­та­ли про­цент маль­чи­ков в каж­дом клас­се и по­лу­чен­ные числа сло­жи­ли. Каким долж­но быть рас­пре­де­ле­ние по клас­сам, чтобы по­лу­чен­ная сумма была наи­боль­шей?

18. 31 де­каб­ря 2013 года Сер­гей взял в банке 9 930 000 руб­лей в кре­дит под 10% го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 10%), затем Сер­гей пе­ре­во­дит в банк опре­делённую сумму еже­год­но­го пла­те­жа. Какой долж­на быть сумма еже­год­но­го пла­те­жа, чтобы Сер­гей вы­пла­тил долг тремя рав­ны­ми еже­год­ны­ми пла­те­жа­ми?

19. 1 ян­ва­ря 2015 года Павел Ви­та­лье­вич взял в банке 1 млн руб­лей в кре­дит. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 1 числа каж­до­го сле­ду­ю­ще­го ме­ся­ца банк на­чис­ля­ет 1 про­цент на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 1%), затем Павел Ви­та­лье­вич пе­ре­во­дит в банк платёж. НА какое ми­ни­маль­ное ко­ли­че­ство ме­ся­цев Павел Ви­та­лье­вич может взять кре­дит, чтобы еже­ме­сяч­ные вы­пла­ты были не более 125 тыс. руб­лей?

20. Кон­серв­ный завод вы­пус­ка­ет фрук­то­вые ком­по­ты в двух видах тары — стек­лян­ной и же­стя­ной. Про­из­вод­ствен­ные мощ­но­сти за­во­да поз­во­ля­ют вы­пус­кать в день 90 цент­не­ров ком­по­тов в стек­лян­ной таре или 80 цент­не­ров в же­стя­ной таре. Для вы­пол­не­ния усло­вий ас­сор­ти­мент­но­сти, ко­то­рые предъ­яв­ля­ют­ся тор­го­вы­ми се­тя­ми, про­дук­ции в каж­дом из видов тары долж­но быть вы­пу­ще­но не менее 20 цент­не­ров. В таб­ли­це при­ве­де­ны се­бе­сто­и­мость и от­пуск­ная цена за­во­да за 1 цент­нер про­дук­ции для обоих видов тары.

Вид тары Се­бе­сто­и­мость, 1 ц. От­пуск­ная цена, 1 ц.
стек­лян­ная 1500 руб. 2100 руб.
же­стя­ная 1100 руб. 1750 руб.

Пред­по­ла­гая, что вся про­дук­ция за­во­да на­хо­дит спрос (ре­а­ли­зу­ет­ся без остат­ка), най­ди­те мак­си­маль­но воз­мож­ную при­быль за­во­да за один день (при­бы­лью на­зы­ва­ет­ся раз­ни­ца между от­пуск­ной сто­и­мо­стью всей про­дук­ции и её се­бе­сто­и­мо­стью).

21.31 де­каб­ря 2014 года Яро­слав взял в банке не­ко­то­рую сумму в кре­дит под 12,5% го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга ( то есть уве­ли­чи­ва­ет долг на 12,5%), затем Яро­слав пе­ре­во­дит в банк 2 132 325 руб­лей. Какую сумму взял Яро­слав в банке, если он вы­пла­тил долг че­тырь­мя рав­ны­ми пла­те­жа­ми (то есть за че­ты­ре года)?

22. Два бро­ке­ра ку­пи­ли акции од­но­го до­сто­ин­ства на сумму 3640 р. Когда цена на эти акции воз­рос­ла, они про­да­ли часть акций на сумму 3927 р. Пер­вый бро­кер про­дал 75% своих акций, а вто­рой 80% своих. При этом сумма от про­да­жи акций, по­лу­чен­ная вто­рым бро­ке­ром, на 140% пре­вы­си­ла сумму, по­лу­чен­ную пер­вым бро­ке­ром. На сколь­ко про­цен­тов воз­рос­ла цена одной акции?

23. Оля хочет взять в кре­дит 1 200 000 руб­лей. По­га­ше­ние кре­ди­та про­ис­хо­дит раз в год рав­ны­ми сум­ма­ми (кроме, может быть, по­след­ней) после на­чис­ле­ния про­цен­тов. Став­ка про­цен­та 10 % го­до­вых. На какое ми­ни­маль­ное ко­ли­че­ство лет может Оля взять кре­дит, чтобы еже­год­ные вы­пла­ты были не более 320 000 руб­лей?

24. 31 де­каб­ря 2013 года Сер­гей взял в банке 9 930 000 руб­лей в кре­дит под 10% го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 10%), затем Сер­гей пе­ре­во­дит в банк опре­делённую сумму еже­год­но­го пла­те­жа. Какой долж­на быть сумма еже­год­но­го пла­те­жа, чтобы Сер­гей вы­пла­тил долг тремя рав­ны­ми еже­год­ны­ми пла­те­жа­ми?

25. Сер­гей взял кре­дит в банке на срок 9 ме­ся­цев. В конце каж­до­го ме­ся­ца общая сумма остав­ше­го­ся долга уве­ли­чи­ва­ет­ся на 12%, а затем умень­ша­ет­ся на сумму, упла­чен­ную Сер­ге­ем. Суммы, вы­пла­чи­ва­е­мые в конце каж­до­го ме­ся­ца, под­би­ра­ют­ся так, чтобы в ре­зуль­та­те сумма долга каж­дый месяц умень­ша­лась рав­но­мер­но, то есть на одну и ту же ве­ли­чи­ну.

Сколь­ко про­цен­тов от суммы кре­ди­та со­ста­ви­ла общая сумма, упла­чен­ная Сер­ге­ем банку (сверх кре­ди­та)?

26. 31 де­каб­ря 2014 года Алек­сей взял в банке 6 902 000 руб­лей в кре­дит под 12,5% го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая — 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 12,5%), затем Алек­сей пе­ре­во­дит в банк X руб­лей. Какой долж­на быть сумма X, чтобы Алек­сей вы­пла­тил долг че­тырь­мя рав­ны­ми пла­те­жа­ми (то есть за че­ты­ре года)?

27.Алек­сей при­обрёл цен­ную бу­ма­гу за 7 тыс. руб­лей. Цена бу­ма­ги каж­дый год воз­рас­та­ет на 2 тыс. руб­лей. В любой мо­мент Алек­сей может про­дать бу­ма­гу и по­ло­жить вы­ру­чен­ные день­ги на бан­ков­ский счёт. Каж­дый год сумма на счёте будет уве­ли­чи­вать­ся на 10 %. В те­че­ние ка­ко­го года после по­куп­ки Алек­сей дол­жен про­дать цен­ную бу­ма­гу, чтобы через трид­цать лет после по­куп­ки этой бу­ма­ги сумма на бан­ков­ском счёте была наи­боль­шей?

28. Оля хочет взять в кре­дит 100 000 руб­лей. По­га­ше­ние кре­ди­та про­ис­хо­дит раз в год рав­ны­ми сум­ма­ми (кроме, может быть, по­след­ней) после на­чис­ле­ния про­цен­тов. Став­ка про­цен­та 10 % го­до­вых. На какое ми­ни­маль­ное ко­ли­че­ство лет может Оля взять кре­дит, чтобы еже­год­ные вы­пла­ты были не более 24000 руб­лей?

29. 1 ян­ва­ря 2015 года Алек­сандр Сер­ге­е­вич взял в банке 1,1 млн руб­лей в кре­дит. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая — 1 числа каж­до­го сле­ду­ю­ще­го ме­ся­ца банк на­чис­ля­ет 1 про­цент на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 1%), затем Алек­сандр Сер­ге­е­вич пе­ре­во­дит в банк платёж. На какое ми­ни­маль­ное ко­ли­че­ство ме­ся­цев Алек­сандр Сер­ге­е­вич может взять кре­дит, чтобы еже­ме­сяч­ные вы­пла­ты были не более 275 тыс. руб­лей?

30. 31 де­каб­ря 2014 года Пётр взял в банке не­ко­то­рую сумму в кре­дит под не­ко­то­рый про­цент го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая — 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на а%), затем Пётр пе­ре­во­дит оче­ред­ной транш. Если он будет пла­тить каж­дый год по 2 592 000 руб­лей, то вы­пла­тит долг за 4 года. Если по 4 392 000 руб­лей, то за 2 года. Под какой про­цент Пётр взял день­ги в банке?

Наши рекомендации