Липидный бислой - двумерная жидкость

Молекулы фосфолипидов самопроизвольно (без участия ферментов) очень редко перемещаются из одного слоя мембраны в другой. Поэтому наружный и внутренний слои могут отличаться по составу фосфолипидов. Однако в пределах «своего» слоя в определённом диапазоне температуры молекулы фосфолипидов двигаются примерно с такой же скоростью, что и в жидкости. Образно говоря, мембрана — «двумерная жидкость». Отдельная молекула фосфолипида в этой жидкости перемещается за секунду в среднем на расстояние около 2 мкм. Так что на картинке вверху движение молекул фосфолипидов не такое, как в жизни. Зато на картинке видно, что эти молекулы время от времени слегка «выпирают» из слоя, а между ними образуются небольшие щели. Так и происходит на самом деле. Течучесть мембран обеспечивает самозамыкание (о его причинах - см. выше). Если воткнуть в клетку тонкую иглу или трубку (микропипетку), а затем вытащить её обратно, то во многих случаях клетка остается целой и невредимой. Образовавшееся в мембране отверстие затягивается, как пленка нефти на поверхности воды, и содержимое клетки не успевает вытечь наружу.

Задача. Как Вы думаете, почему текучесть мембраны важна для ее функционирования? Какие функции мембраны нарушились бы при резком уменьшении текучести?

Текучесть мембраны падает при понижении температуры. При определенной температуре текучесть зависит от состава мембраны. Чем теснее упакованы "хвосты" фосфолипидов, тем менее текучей будет мембрана. Главные свойства углеводородных хвостов, влияющие на плотность упаковки – их длина и количество в них двойных связей. При увеличении длины "хвостов" (она варьирует от 14 до 24 атомов углерода) текучесть мембраны понижается. Двойные связи в остатках ненасыщенных жирных кислот создают изгибы "хвостов", снижают плотность упаковки и повышают текучесть мембраны.

Задача. В каком масле больше ненасыщенных жирных кислот - сливочном или подсолнечном? Ответ обоснуйте.

У бактерий, грибов и растений при повышении температуры синтезируются фосфолипиды с более длинными "хвостами" и/или меньшим числом двойных связей, чтобы поддерживать текучесть мембран на постоянном уровне. У животных на текучесть мембран сильнее влияет содержание холестерина. При высокой (35-400С) температуре он снижает текучесть. При низкой температуре он препятствует "замерзанию" мембраны, способствует сохранению подвижности молекул фосфолипидов. Особенно много холестерина в наружной мембране (до 50%, то есть по одной молекуле холестерина на каждую молекулу фосфолипидов). Вопреки распространенному мнению, стеролы (к которым относится и холестерин) присутствуют и в мембранах клеток некоторых прокариот. Наиболее полный путь биосинтеза стеролов найден у миксобактерий. Правда, нельзя исключить, что часть генов, необходимых для синтеза стеролов, они получили от эукариот путем горизонтального переноса

Липосомы — искусственные бислойные структуры, используемые в практике

Жидкие свойства мембран можно изучать, используя искусственные липидные бислои. Часто в опытах используют замкнутые сферические пузырьки – липосомы. Они образуются, если в воду помещают чистые фосфолипиды; их диаметр варьирует от 25 нм до нескольких микрометров (чаще - 25-250 нм).

Основные функции наружной мембраны

Отграничительная функция.

Наружная мембрана обеспечивает целостность клетки, не давая её содержимому (растворимым веществам цитоплазмы) смешаться с окружающей средой или межклеточной жидкостью.

Транспортная функция.

Важное свойство мембраны, связанное с выполнением этой функции — избирательная проницаемость. Некоторые вещества свободно проходят через липидный бислой за счет диффузии, для других он практически непроницаем. За транспорт таких веществ в клетки и из клеток отвечают особые транспортные белки.

Рецепторная функция.

Белки-рецепторы, имеющиеся на наружной мембране любой клетки, обеспечивают восприятие сигналов из внешней среды, их передачу в клетку и запуск ответной реакции. Самый распротсраненный вид сигналов — химические вещества, которые связываются с рецепторами.

Образование межклеточных контактов.

Белки — обязательный компонент биологических мембран.

Типы мембранных белков

Для многих веществ, которые необходимы клетке для роста и получения энергии, липидный бислой практически непроницаем. Так, очень медленно диффундируют через него глюкоза и другие моносахариды, аминокислоты и нуклеотиды. Уже из этого ясно, что в мембране должны существовать «поры» для транспорта веществ в клетку и из клетки. Транспорт веществ, которые медленно проходят через липидный бислой, осуществляют транспортные белки. Две их основные разновидности - это белки-каналы и белки-переносчики. Рецепторную функцию мембраны тоже обеспечивают белки. Это - белки-рецепторы. (Часто в состав мембранных рецепторов входят олигосахарадиные цепи, так что, строго говоря, это гликопротеиды). При этом часть рецепторов одновременно служат и ионными каналами. Это, прежде всего, рецепторы нейромедиаторов. Другие рецепторы являются ферментами - они либо активируют специальные белки-посредники (G-белки), либо "работают" протеинкиназами.



Наши рекомендации