Вирусы как возбудитель заболеваний
Билеты по Биологии
1 курс
Билет №1
1. Белки, их строение и функции в организме.
Белки́ (протеины) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью (белковая молекула представляет собой линейный полимер, построенный из аминокислот, соединенных между собой валентными амидными связями (пептидными связями).
Говоря о строении белка, различают:
-- первичную структуру - последовательность аминокислот, прочитываемую, начиная от С-конца молекулы, в направлении к N-концу;
-- вторичную структуру - наличие и локализацию альфа-спиральных участков цепи и участков, сложенных в бета-структуры;
-- третичную структуру ( пространственную) - взаимное расположение аминокислотных остатков молекулы белка в пространстве;
-- четвертичную структуру - компонентный состав, стехиометрию и взаимную ориентацию субъединиц комплекса, в том случае, когда молекулы белка обладают способностью к его образованию.
В организме человека белки выполняют следующие функции:
Пластическую. На долю белков приходится 15-20% сырой массы различных тканей (липиды и углеводы составляют 1-5 %). Белки являются главным строительным материалом клетки и межклеточного вещества. Они вместе с фосфолипидами образуют остов всех биологических мембран.
Каталитическую. Белки служат основным компонентом всех ферментов. Ферментам принадлежит решающая роль в ассимиляции пищевых веществ организмом человека и в регуляции всех внутриклеточных обменных процессов.
Гормональную. Большая часть гормонов по своей природе является белками или полипептидами. К их числу принадлежат гормоны гипофиза (АКТГ, соматотропный, тиреотропный и др.) , инсулин, паратиреоидный гормон.
Специфичности. Белки обеспечивают тканевую индивидуальную и видовую специфичность, лежащую в основе проявлений иммунитета и аллергии, а также защиту организма от чужеродных антигенов.
Транспортную. Белки участвуют в переносе кровью кислорода (гемоглобин) , липидов (липопротеиды) , углеводов (гликопротеиды) , некоторых витаминов, гормонов, лекарственных веществ и др. Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур.
2. Наследственная изменчивость как движущая сила эволюции.
Наследственность — свойство организмов передавать особенности строения и жизнедеятельности из поколения в поколение.
Материальные основы наследственности — хромосомы и гены, в которых хранится информация о признаках организма. Передача генов и хромосом из поколения в поколение благодаря размножению. Развитие дочернего организма из одной клетки — зиготы или группы клеток материнского организма в процессе размножения. Локализация в ядрах клеток, участвующих в размножении, генов и хромосом, определяющих сходство дочернего организма с материнским.
Изменчивость — общее свойство всех организмов приобретать новые признаки в процессе индивидуального развития.
Наследственная изменчивость — фактор эволюции. Появление новых признаков у организмов и их многообразие — материал для действия естественного отбора, сохранения особей с изменениями, соответствующими среде обитания, формирования приспособленности организмов к изменяющимся условиям внешней среды.
Билет №2
1. Фотосинтез, его значение. Космическая роль зеленых растений.
Фотосинтез — процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий)
Значение фотосинтеза в природе:
Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.
Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни.
Космическая роль зеленых растений:
Особая роль в этом отношении принадлежит зеленым растениям, роль, которую К. А. Тимирязев назвал Космической. Она заключается в том, что «зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на Земле»
Ежегодно на Землю поступает огромное количество энергии солнца (1,26- 1024 кал) , 42% которой отражается в мировое пространство. Используя часть энергии солнечных лучей, зеленые растения утилизируют углекислый газ воздуха в качестве источника углерода в процессе синтеза органических веществ. Но зеленое растение не только получает для себя пищу из неорганической природы, оно, по словам Тимирязева, является посредником между небом и Землей. Энергия, полученная от солнечного луча, аккумулируется в растении и в этом виде вместе с накопленным в его теле органическим веществом поступает в организм других растений или животных, питающихся растительной пищей. Последние в свою очередь служат пищей для других гетеротрофных организмов.
Выделяемый в процессе фотосинтеза кислород оказывается необходимым для жизни всех аэробных организмов, которые в процессе дыхания поглощают его из воздуха, одновременно выделяя углекислый газ. Такое постоянное поступление углекислого газа в атмосферу имеет колоссальное значение в круговороте веществ. По приблизительным подсчетам, растительный покров земного шара ежегодно ассимилирует из углекислого газа свыше 140 млрд. т углерода, что примерно составляет 3 г на гектар. Всего в атмосфере содержится около двух тысяч биллионов килограммов углекислого газа, которого не хватило бы и на100 лет, если бы он не поступал в атмосферу и гидросферу в процессе жизнедеятельности организмов.
2. Вид, его критерии. Редкие и исчезающие виды растений и животных, меры их сохранения.
Вид — основная структурная единица биологической систематики живых организмов (животных, растений и микроорганизмов); таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённого ареала и сходно изменяющаяся под влиянием факторов внешней среды.
Основные критерии:
Морфологический критерий предполагает описание внешних (морфологических) признаков особей, входящих в состав определенного вида. По внешнему виду, размерам и окраске оперения можно, например, легко отличить большого пестрого дятла от зеленого, малого пестрого дятла от желны, большую синицу от хохлатой, длиннохвостой, голубой и от гаички. По внешнему виду побегов и соцветий, размерам и расположению листьев легко различают виды клевера: луговой, ползучий, люпиновый, горный.
Физиологический критерий заключается в сходстве жизненных процессов, в первую очередь в возможности скрещивания между особями одного вида с образованием плодовитого потомства. Между разными видами существует физиологическая изоляция. Например, у многих видов дрозофилы сперма особей чужого вида вызывает иммунологическую реакцию в половых путях самки, что приводит к гибели сперматозоидов. В то же время между некоторыми видами живых организмов скрещивание возможно; при этом могут образовываться плодовитые гибриды (зяблики, канарейки, вороны, зайцы, тополя, ивы и др.)
Географический критерий (географическая определенность вида) основан на том, что каждый вид занимает определенную территорию или акваторию. Иными словами, каждый вид характеризуется определенным географическим ареалом. Многие виды занимают разные ареалы. Но огромное число видов имеет совпадающие (накладывающиеся) или перекрывающиеся ареалы. Кроме того, существуют виды, не имеющие четких границ распространения, а также виды-космополиты, обитающие на огромных пространствах суши или океана. Космополитами являются некоторые обитатели внутренних водоемов — рек и пресноводных озер (виды рдестов, ряски, тростник). Обширный набор космополитов имеется среди сорных и мусорных растений, синантропных животных (виды, обитающие рядом с человеком или его жилищем) — постельный клоп, рыжий таракан, комнатная муха, а также одуванчик лекарственный, ярутка полевая, пастушья сумка и др.
Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя соответствующую функцию в определенном биогеоценозе. Иными словами, каждый вид занимает определенную экологическую нишу. Например, лютик едкий произрастает на пойменных лугах, лютик ползучий — по берегам рек и канав, лютик жгучий — на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологичекой приуроченности. Во-первых, это синан-тропные виды. Во-вторых, это виды, которые находятся под опекой человека: комнатные и культурные растения, домашние животные.
Генетический (цитоморфологический) критерий основан на различии видов по кариотипам, т. е. по числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является универсальным. Во-первых, у многих разных видов число хромосом одинаково и форма их сходна. Так, многие виды из семейства бобовых имеют 22 хромосомы (2n = 22). Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций. Например, ива козья имеет диплоидное (38) и тетраплоид-ное (76) число хромосом. У серебристого карася встречаются популяции с набором хромосом 100, 150,200, тогда как нормальное число их равно 50. Таким образом, в случае возникновения полиплоидных или анеушюидных (отсутствие одной хромосомы или появление лишней в геноме) форм на основе генетического критерия нельзя достоверно определить принадлежность особей к конкретному виду
Биохимический критерий позволяет различить виды по биохимическим параметрам (состав и структура определенных белков, нуклеиновых кислот и других веществ). Известно, что синтез определенных высокомолекулярных веществ присущ лишь отдельным группам видов. Например, по способности образовывать и накапливать алкалоиды различаются виды растений в пределах семейств пасленовых, сложноцветных, лилейных, орхидных. Или, к примеру, для двух видов бабочек из рода амата диагностическим признаком является наличие двух ферментов — фосфоглю-комутазы и эстеразы-5. Однако этот критерий не находит широкого применения — он трудоемкий и далеко не универсальный. Существует значительная внутривидовая изменчивость практически всех биохимических показателей вплоть до последовательности аминокислот в молекулах белков и нуклеотидов в отдельных участках ДНК.
Вымирающие виды — биологические виды, которые подвержены угрозе вымирания из-за своей критически малой численности либо воздействия определенных факторов окружающей среды.
Наиболее всесторонней справочной системой по вопросу охранного статуса видов на Земле является Красная книга МСОП. В ней с учетом как вышеупомянутых общих факторов, так и индивидуальных особенностей, характерных для каждого вида, виды распределены на 9 категорий:
Исчезнувший — вид, который исчез после смерти последнего животного данного вида и особей которых на момент исчезновения не было в неволе. Сюда не относятся животные, вымершие по различным причинам до 1500 года (как, например, динозавры).
Исчезнувший в природе— вид, полностью истреблённый в природе, но сохранённый в неволе.
Находится под критической угрозой — виды, количество особей которых в природе не превышает нескольких сотен.
Находится под угрозой— вид, количество особей которого довольно велико, но в силу определённых причин ещё нельзя сказать, что он не исчезнет в течение нескольких лет.
Уязвимый — многочисленный вид, который, однако, в силу причин (например, вырубки леса) всё ещё в опасности.
Близкий к угрозе вымирания— вид, который практически стоек, но ещё не в безопасности
Находится под небольшой угрозой— вид, который настолько многочислен, что сомнительно, что он самостоятельно попадёт под угрозу вымирания через десятки лет. С 2009 года к этому классу причислены люди.
Сведения недостаточны — виды, численность которых неясна.
Неисследованный — виды, сведения о которых не позволяют даже приблизительно определить угрозу их существования.
Охрана видов:
Чаще всего для охраны видов, в случае их небольшого ареала, предпринимается постройка специальных территорий трёх типов — заказник, заповедник или национальный парк. Заказник запрещает охоту в определённые сроки и предназначен для восстановления популяции животных после охоты. Проникновение человека туда свободно, но загрязнять там природу и вырубать леса запрещается. Заповедник запрещает охоту круглый год, в нём не должны быть построены никакие здания, в нём запрещена вырубка лесов и загрязнение природы, а также туда имеют доступ лишь учёные. Национальный парк разрешает допуск туристов и иных посетителей, но также запрещает охоту, загрязнение природы, вырубку лесов и постройку жилых зданий хотя разрешены административные. Размеры у них могут быть разные, причём иногда их границы могут соприкасаться, что может создавать неудобства в охране одного и того же вида, но в разных учреждениях. Для видов, вымерших в природе, но сохранившихся в неволе, существуют специальные питомник, в которых животным дают жить.
Билет №3
1. Вирусы, их строение. Вирусы – возбудители опасных заболеваний.
Вирусы - мельчайшие организмы, их размеры колеблются от 12 до 500 нанометров. Мелкие вирусы равны крупным молекулам белка. Вирусы - резко выраженные паразиты клеток. Важнейшими отличительными особенностями вирусов являются следующие отличия:
1. Они содержат в своем составе только один из типов нуклеиновых кислот: либо рибонуклеиновую кислоту (РНК), либо дезоксирибонуклеиновую (ДНК), - а все клеточные организмы, в том числе и самые примитивные бактерии, содержат и ДНК, и РНК одновременно.
2. Не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения используют обмен веществ клетки - хозяина, ее ферменты и энергию.
3. Могут существовать только как внутриклеточные паразиты и не размножаются вне клеток тех организмов, в которых паразитируют.
Строение вирусов
Вирусы нельзя увидеть в оптический микроскоп, так как их размеры меньше длины световой волны. Разглядеть их можно лишь с помощью электронного микроскопа.
Вирусы состоят из следующих основных компонентов:
1. Сердцевина - генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса.
2. Белковая оболочка, которую называют капсидом (от латинского слова капса - ящик). Она часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.
3. Дополнительная липопротеидная оболочка. Она образована из плазматической мембраны клетки-хозяина и встречается только у сравнительно больших вирусов (грипп, герпес).
Билет №4
1. Химический состав клетки. Роль воды и неорганических веществ в жизнедеятельности клетки.
Элементарный состав клетки. Сходство химического состава клеток разных организмов как доказательство их родства. Основные химические элементы, входящие в состав клетки: кислород, углерод, водород, азот, калий, сера, фосфор, хлор, магний, натрий, кальций, железо.
Химические вещества, входящие в состав клетки: неорганические (вода, минеральные соли) и органические (углеводы, жиры, белки, нуклеиновые кислоты, АТФ).
Минеральные соли, их роль в клетке. Содержание минеральных солей в клетке в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов (—НРО|~, — Н2РС>4, —СГ, —НСС*з). Уравновешенность содержания катионов и анионов в клетке, обеспечивающая постоянство внутренней среды организма. Примеры: в клетке среда слабощелочная, внутри клетки высокая концентрация ионов К+, а в окружающей клетку среде — ионов Na+. Участие минеральных солей в обмене веществ.
Вода. Содержание воды в клетке — от 40 до 98% ее массы. Роль воды в клетке:
— обеспечение упругости клетки. Последствия потери клеткой воды — увядание листьев, высыхание плодов;
— ускорение химических реакций за счет растворения веществ в воде;
— обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;
— обеспечение растворения многих химических веществ (ряда солей, Сахаров);
— участие в ряде химических реакций;
— участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.
2. Многообразие видов в природе. Сохранение видового разнообразия как основа устойчивого развития биосферы.
Биосфера— гигантская экологическая система, заселенная разнообразными видами растений (около 0,5 млн.), животных (примерно в 3—4 раза больше, чем видов растений), грибов (около 100 тыс. видов), бактерий (около 25 тыс. видов), связанными между собой генетическими, пищевыми, территориальными и др. связями.
Причины многообразия видов. Их возникновение благодаря наследственной изменчивости, действию борьбы за существование и естественного отбора.
Под биоразнообразием понимают все виды растений, животных, микроорганизмов, а также сами экосистемы и экологические процессы, частью которых они являются. Оно является основой жизни на Земле: чем большее количество растительных и живых организмов образуют экосистему, тем более она устойчива. В последнее время человечество осознало полезность диких видов растений и животных. Они не только содействуют развитию с/х, медицины и промышленности, но и полезны для окружающей среды, являясь неотъемлемой частью экосистем. Даже виды организмов, которые не входят в пищевую цепь человека, могут быть ему полезны, хотя и приносят пользу косвенным путем. Понятие биоразнообразия все чаще ставится во главу угла при оценке состояния и экологического благополучия экосистем. Утрата видового разнообразия, как жизненного ресурса может привести к серьезным глобальным последствиям для человека и даже его существования на Земле.
Билет №5
1. Нуклеиновые кислоты, их виды и функции в организме.
Нуклеиновая кислота — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
В природе существует два вида нуклеиновых кислот — дезок-сирибонуклеиновые (ДНК)и рибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит пяти-углеродный сахар дезоксирибозу, а молекула РНК— рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме.
ДНК находится преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав рибосом; молекулы РНК содержатся также в цитоплазме, матриксе пластид и митохондрий.
ДНК (дезоксирибонуклеиновая кислота). Сахар — дезоксирибоза, азотистые основания: пуриновые — гуанин (G), аденин (A),пиримидиновые — тимин (T) и цитозин (C). ДНК часто состоит из двух полинуклеотидных цепей, направленных антипараллельно.
РНК (рибонуклеиновая кислота). Сахар — рибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновыеурацил (U) и цитозин (C). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями.
2. Понятие об экосистемах. Цепи питания.
Экосистема, илиэкологическая система — биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии. Экологическая система представляет собой любую совокупность живых организмов и среды их обитания, взаимосвязанных обменом веществ, энеpгии, и информации, которую можно ограничить в пpостpанстве и во вpемени по значимым для конкpетного исследования пpинципам.
Цепь питания - пищевая цепь. Растения, животные, грибы, микроорганизмы, связанные между собой отношением пища-потребитель(органическое вещество-потребитель органического вещества. Пищевая цепь состоит примерно из 4-5 звеньев. Пищевая цепь состоит из продуцентов(производители органического вещества-растения автотрофы),консументов (потребители органического вещества) и редуцентов (бактерий, микроорганизмов разрушающих остатки органического вещества).
Примеры пищевых цепей:
1.злаковые - кузнечики - лягушки - змеи - ежи – коршун
2.отмершие растения и животные - бактерии - простейшие - рыбы- нутрии - камышовый кот
3.зеленая водоросль - рачок из рода Дафний - мелкая рыба - окунь - судак – человек
4.фитопланктон - зоопланктон - рыба питающаяся планктоном - хищная рыба - дельфин
Самые длинные цепи питания образуются в океане, так - как там обитает большое разнообразие видов.
Билет №6
1. Углеводы и липиды, их функции в организме.
Липиды — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках.
Углеводы — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.
В живых организмах углеводы выполняют различные функции, но основными являются энергетическая и строительная.
Энергетическая функция состоит в том, что углеводы под влиянием ферментов легко расщепляются и окисляются с выделением энергии. При полном окислении 1 г углеводов высвобождается 17,6 кДж энергии. Конечные продукты окисления углеводов – углекислый газ и вода.
Значительная роль углеводов в энергетическом балансе живых организмов связана с их способностью расщепляться как при наличии кислорода, так и без него. Это имеет важнейшее значение для живых организмов, живущих в условиях дефицита кислорода. Резервом глюкозы являются полисахариды (крахмал и гликоген) .
2. Генетика как наука, методы генетики. Г. Мендель – основоположник генетики.
Генетика- наука о закономерностях наследственности и изменчивости. Основной задачей генетики является изучение следующих проблем:
1. Хранение наследственной информации.
2. Механизм передачи генетической информации от поколения к поколению клеток или организмов.
3. Реализация генетической информации.
Изменение генетической информации (изучение типов, причин и механизмов изменчивости).
Разработка методов использования генетической инженерии для получения высокоэффективных продуцентов различных биологически активных соединений, а в перспективе и внедрение этих методов в генетику растений, животных и даже человека. Методы, используемые в генетике, разнообразны, но основной из них — гибридологический анализ, то есть скрещивание с последующим генетическим анализом потомства. Он используется на молекулярном, клеточном (гибридизация соматических клеток) и организменном уровнях. Кроме того, в зависимости от уровня исследования (молекулярный, клеточный, организменный, популяционный), изучаемого объекта (бактерии, растения, животные, человек) и других факторов используются самые разнообразные методы современной биологии, химии, физики, математики. Однако каковы бы ни были методы, они всегда являются вспомогательными к основному методу — генетическому анализу.
В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работа Опыты над растительными гибридами была опубликована в трудах общества в 1866 году). Мендель показал, что некоторые наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице, на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).
Билет №7
1. Основные компоненты клетки, их функции.
Клетка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят, как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.
Все клеточные формы жизни на Земле можно разделить на два царства на основании строения составляющих их клеток:
Прокариоты (доядерные) — более простые по строению и возникли в процессе эволюции раньше;
Эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.
Основными элементами эукариотических клеток являются:
Плазматическая мембрана, окружающая каждую клетку, определяет ее величину и обеспечивает сохранение существенных различий между клеточным содержимым и окружающей средой.
Мембрана служит высокоизбирательным фильтром, который поддерживает разницу концентраций ионов по обе стороны мембраны и позволяет питательным веществам проникать внутрь клетки, а продуктам выделения выходить наружу.
Цитоплазма-содержимое клетки, не включающее ядро, включающее цитозоль и органеллы и ограниченное клеточной мембраной.
Цитозоль - это часть цитоплазмы, занимающая пространство между мембранными органеллами . Обычно на него приходится около половины общего объема клетки. В состав цитозоля входит множество ферментов промежуточного обмена и рибосомы. Около половины всех белков, образующихся на рибосомах, остаются в цитозоле в качестве его постоянных компонентов.
Ядро содержит основную часть генома и является главным местом синтеза ДНК и РНК.
Окружающая ядро цитоплазма состоит из цитозоля и расположенных в нем цитоплазматических органелл .
Аппарат Гольджи состоит из правильных стопок уплощенных мембранных мешочков, называемых цистернами Гольджи; он получает из ЭР белки и липиды и отправляет эти молекулы в различные пункты внутри клетки, попутно подвергая их ковалентным модификациям.
Митохондрии производят большую часть АТР, используемого в реакциях биосинтеза, требующих поступления свободной энергии.
Лизосомы содержат пищеварительные ферменты, которые разрушают отработанные органеллы, а также частицы и молекулы, поглощенные клеткой извне путем эндоцитоза. На пути к лизосомам поглощенные молекулы и частицы должны пройти серию органелл, называемых эндосомами.
Основными элементами прокариотических клеток являются:
Отсутствие четко оформленного ядра
Наличие жгутиков, плазмид и газовых вакуолей
Структуры, в которых происходит фотосинтез
Формы размножения — бесполый способ, имеется псевдосексуальный процесс, в результате которого происходит лишь обмен генетической информацией, без увеличения числа клеток.
Размер рибосомы — 70s(по коэф. седиментации различают и рибосомы др. типов, а также субчастицы и биополимеры, входящие в состав рибосом)
2. Многообразие видов в природе. Сохранение видового разнообразия как основа устойчивого развития биосферы.
Под биологическим разнообразием биосферы понимают разнообразие всех видов живых организмов, составляющих биосферу, а также все разнообразие генов, образующих генофонд любой популяции каждого вида, а также разнообразие экосистем биосферы в различных природных зонах. К сожалению, в настоящее время всевозможные виды хозяйственной деятельности человека приводят к снижению биологического разнообразия. Биосфера теряет биологическое разнообразие. В этом заключается одна из экологических опасностей.
Для сохранения биоразнообразия необходимо вкладывать средства в его изучение; совершенствовать природопользование, стараясь сделать его рациональным; решать глобальные экологические проблемы на международном уровне.
Многообразие видов, его причины
1. Биосфера — гигантская экологическая система, заселенная разнообразными видами растений (около 0,5 млн.), животных (примерно в 3—4 раза больше, чем видов растений), грибов (около 100 тыс. видов), бактерий (около 25 тыс. видов), связанными между собой генетическими, пищевыми, территориальными и др. связями.
2. Причины многообразия видов. Их возникновение благодаря наследственной изменчивости, действию борьбы за существование и естественного отбора.
3. Неоднородность вида в пределах ареала, наличие в нем относительно обособленных, однородных по составу групп особей — популяций. Популяция — форма существования вида, единица эволюции, в недрах которой зарождается новый вид.
4. Предполагаемые этапы видообразования:
1) возникновение у особей мутаций.
2) скрещивание этих особей и распространение в популяции мутаций — причина ее неоднородности;
3) действие различных форм борьбы за существование (межвидовой, внутривидовой; борьбы с неблагоприятными условиями);
4) естественный отбор, сохранение в популяции особей преимущественно с полезными мутациями для конкретных условий среды, оставление ими потомства;
5) изменение генофонда популяции, зарождение нового вида в результате наследственной изменчивости, борьбы за существование, естественного отбора.
Билет №8
1. Строение и функции хромосом. Хромосомный набор половых и соматических клеток у разных организмов.
Хромосомы — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи.
Морфология хромосом лучше всего видна в клетке на стадии метафазы. Хромосома состоит из двух палочкообразных телец - хроматид. Обе хроматиды каждой хромосомы идентичны друг другу по генному составу.
Хромосомы дифференцированы по длине. Хромосомы имеют центромеру или первичную перетяжку, две теломеры и два плеча. На некоторых хромосомах выделяют вторичные перетяжки и спутники. Движение хромосомы определяет Центромера, которая имеет сложное строение.
Гаплоидный - одинарный хромосомный набор, в котором хромосома каждого типа встречается в единственном числе (содержится в половых клетках диплоидных организмов). Диплоидный (2n) - двойной набор хромосом, в котором имеются всегда по две хромосомы каждого типа (парные, или гомологичные, хромосомы, происходящие одна от материнского организма, а другая от отцовского). Триплоидный (3n) - тройной набор хромосом.
Хромосомный набор половых клеток - гаплоидный (одинарный)
Хромосомный набор соматических клеток - диплоидный (двойной)
Например, у человека в половых клетках 23 хромосомы, в соматических - 46.
У дрозофилы в половых клетках 4 хромосомы, в соматических - 8.
У гороха в половых клетках 7 хромосом, в соматических - 14.
2. Круговорот веществ и превращение энергии в биосфере (на примере круговорота углерода или других элементов).
В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы — в живые организмы, а из них — в окружающую среду, пополняя таким образом неживое вещество биосферы . Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ — за 200—300 лет. Круговорот веществ, как и все происходящие в природе процессы, требует постоянного притока энергии. Основой биогенного круговорота, обеспечивающего существование жизни, является солнечная энергия. Связанная в органических веществах энергия но ступеням пищевой цепи уменьшается, потому что большая ее часть поступает в окружающую среду в виде тепла или же тратится на осуществление процессов, происходящих в организмах, Поэтому в биосфере наблюдается поток энергии и ее преобразование. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.
Билет №9
1. Понятие о гене. Генетический код, его свойства.
Ген — структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма.
Генетический код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
Свойства генетического кода
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон) .
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываем