Метаболизм аминокислот и белков.
Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует специальные транспортные системы: две для незаряженных и еще несколько - для аминокислот, заряженных положительно и отрицательно.
До 75% от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, глутатион, ГАМК и другие).
Функции глутамата в нервной ткани:
1. Энергетическая. Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами ЦТК.
2. Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака.
3. Из глутамата образуется нейромедиатор ГАМК.
4. Глутамат принимает участие в синтезе глутатиона - одного из компонентов антиоксидантной системы организма.
Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях.
Биохимия соединительной ткани
Соединительная ткань составляет до 50 % массы человеческого организма. Это связующее звено между всеми тканями организма.
Различают 3 вида соединительной ткани:
1. собственно соединительная ткань;
2. хрящевая соединительная ткань;
3. костная соединительная ткань.
Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.
Функции соединительной ткани
1. Структурная.
2. Обеспечение постоянства тканевой проницаемости.
3. Обеспечение водно-солевого равновесия.
4. Участие в иммунной защите организма.
Состав и строение соединительной ткани
В соединительной ткани различают:межклеточное (основное) вещество, клеточные элементы, волокнистые структуры (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.
Биохимия межклеточного матрикса (основное вещество). Гликозамингликаны и протеогликаны: строение, функция. Роль глюкуроновой кислоты в организации межклеточного матрикса.
Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями (белками и углеводами), составляющими до 30 % массы межклеточного вещества, оставшиеся 70 % - это вода.
Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами - глюкозоаминогликаны (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.
По строению мономеров различают 7 типов глюкозаминогликанов.
1. Гиалуроновая кислота.
2. Хондроитин-4-сульфат.
3. Хондроитин-6-сульфат.
4. Дерматансульфат.
5. Кератансульфат.
6. Гепарансульфат.
7. Гепарин.
Гиалуроновая кислота.
Мономер построен из глюкуроновой кислоты и N - ацетилглюкозамина. Гиалуроновая кислота может находиться и в свободном виде, и в составе сложных агрегатов. Это единственный представитель глюкозаминогликанов, который не сульфатирован.
Хондроитин-сульфаты.
Хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения остатка серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой кислоты и N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.
Дерматан-сульфат.
Его мономер построен из идуроновой кислоты и галактозамин-4-сульфата. Он является одним из структурных компонентов хрящевой ткани.
Кератан-сульфатсостоит из галактозы и N-ацетилглюкозамин-6-сульфата.
Гепаран-сульфат и гепарин.
Они сильно сульфатированы (в мономере 2-3 остатка серной кислоты). В состав их входят глюкуронат-2-сульфат и N- ацетилглюкозамин-6-сульфат.
Длинные полисахаридные цепи складываются в глобулы.Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. Глюкозаминогликаны являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп), что способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду. Глюкозаминогликаны входят в состав сложных белков, которые называются протеогликанами. Глюкозаминогликаны составляют в протеогликанах 95 % их веса. Остальные 5 % веса - это белок. В клетке протеогликаны связаны с гиалуроновой кислотой, образуя сложный надмолекулярный комплекс. Кроме протеогликанов, основное вещество содержит гликопротеины.
Углеводный компонент гликопротеинов - это олигосахарид, состоящий 10-15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, рамноза, фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация сиаловых кислот - значит, идет распад межклеточного матрикса. Это бывает при воспалении.
Гликопротеины делят на 2 группы:
1. растворимые;
2. нерастворимые.
Растворимые гликопротеины представлены особым белком - фибронектином. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами (коллагеном), гликолипидами клеточных мембран. Поэтому фибронектин называют "молекулярным клеем". Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.
К нерастворимым гликопротеинам относится ламинин. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран. Нерастворимые гликопротеины образуют "каркас", "строму" межклеточного матрикса.