Метаболизм аминокислот и белков.

Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует специальные транспортные системы: две для незаряженных и еще несколько - для аминокислот, заряженных положительно и отрицательно.

До 75% от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, глутатион, ГАМК и другие).

Функции глутамата в нервной ткани:

1. Энергетическая. Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами ЦТК.

2. Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака.

3. Из глутамата образуется нейромедиатор ГАМК.

4. Глутамат принимает участие в синтезе глутатиона - одного из компонентов антиоксидантной системы организма.

Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях.

Биохимия соединительной ткани

Соединительная ткань составляет до 50 % массы человеческого организма. Это связующее звено между всеми тканями организма.

Различают 3 вида соединительной ткани:

1. собственно соединительная ткань;

2. хрящевая соединительная ткань;

3. костная соединительная ткань.

Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.

Функции соединительной ткани

1. Структурная.

2. Обеспечение постоянства тканевой проницаемости.

3. Обеспечение водно-солевого равновесия.

4. Участие в иммунной защите организма.

Состав и строение соединительной ткани

В соединительной ткани различают:межклеточное (основное) вещество, клеточные элементы, волокнистые структуры (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

Биохимия межклеточного матрикса (основное вещество). Гликозамингликаны и протеогликаны: строение, функция. Роль глюкуроновой кислоты в организации межклеточного матрикса.

Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями (белками и углеводами), составляющими до 30 % массы межклеточного вещества, оставшиеся 70 % - это вода.

Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами - глюкозоаминогликаны (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.

По строению мономеров различают 7 типов глюкозаминогликанов.

1. Гиалуроновая кислота.

2. Хондроитин-4-сульфат.

3. Хондроитин-6-сульфат.

4. Дерматансульфат.

5. Кератансульфат.

6. Гепарансульфат.

7. Гепарин.

Гиалуроновая кислота.

Мономер построен из глюкуроновой кислоты и N - ацетилглюкозамина. Гиалуроновая кислота может находиться и в свободном виде, и в составе сложных агрегатов. Это единственный представитель глюкозаминогликанов, который не сульфатирован.

Хондроитин-сульфаты.

Хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения остатка серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой кислоты и N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.

Дерматан-сульфат.

Его мономер построен из идуроновой кислоты и галактозамин-4-сульфата. Он является одним из структурных компонентов хрящевой ткани.

Кератан-сульфатсостоит из галактозы и N-ацетилглюкозамин-6-сульфата.

Гепаран-сульфат и гепарин.

Они сильно сульфатированы (в мономере 2-3 остатка серной кислоты). В состав их входят глюкуронат-2-сульфат и N- ацетилглюкозамин-6-сульфат.

Длинные полисахаридные цепи складываются в глобулы.Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. Глюкозаминогликаны являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп), что способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду. Глюкозаминогликаны входят в состав сложных белков, которые называются протеогликанами. Глюкозаминогликаны составляют в протеогликанах 95 % их веса. Остальные 5 % веса - это белок. В клетке протеогликаны связаны с гиалуроновой кислотой, образуя сложный надмолекулярный комплекс. Кроме протеогликанов, основное вещество содержит гликопротеины.

Углеводный компонент гликопротеинов - это олигосахарид, состоящий 10-15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, рамноза, фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация сиаловых кислот - значит, идет распад межклеточного матрикса. Это бывает при воспалении.

Гликопротеины делят на 2 группы:

1. растворимые;

2. нерастворимые.

Растворимые гликопротеины представлены особым белком - фибронектином. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами (коллагеном), гликолипидами клеточных мембран. Поэтому фибронектин называют "молекулярным клеем". Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.

К нерастворимым гликопротеинам относится ламинин. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран. Нерастворимые гликопротеины образуют "каркас", "строму" межклеточного матрикса.

Наши рекомендации