Нервная ткань. Особенности химического состава нервной ткани. Энергетический обмен нервной ткани.

Метаболизм аминокислот и белков.

Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует специальные транспортные системы: две для незаряженных и еще несколько - для аминокислот, заряженных положительно и отрицательно.

До 75% от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, глутатион, ГАМК и другие).

Функции глутамата в нервной ткани:

1. Энергетическая. Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами ЦТК.

2. Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака.

3. Из глутамата образуется нейромедиатор ГАМК.

4. Глутамат принимает участие в синтезе глутатиона - одного из компонентов антиоксидантной системы организма.

Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях.

Биохимия соединительной ткани

Соединительная ткань составляет до 50 % массы человеческого организма. Это связующее звено между всеми тканями организма.

Различают 3 вида соединительной ткани:

1. собственно соединительная ткань;

2. хрящевая соединительная ткань;

3. костная соединительная ткань.

Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.

Функции соединительной ткани

1. Структурная.

2. Обеспечение постоянства тканевой проницаемости.

3. Обеспечение водно-солевого равновесия.

4. Участие в иммунной защите организма.

Состав и строение соединительной ткани

В соединительной ткани различают:межклеточное (основное) вещество, клеточные элементы, волокнистые структуры (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

Биохимия межклеточного матрикса (основное вещество). Гликозамингликаны и протеогликаны: строение, функция. Роль глюкуроновой кислоты в организации межклеточного матрикса.

Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель, который образован высокомолекулярными соединениями (белками и углеводами), составляющими до 30 % массы межклеточного вещества, оставшиеся 70 % - это вода.

Высокомолекулярные компоненты представлены белками и углеводами. Углеводы по своему строению являются гетерополисахаридами - глюкозоаминогликаны (ГАГ). Эти гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.

По строению мономеров различают 7 типов глюкозаминогликанов.

1. Гиалуроновая кислота.

2. Хондроитин-4-сульфат.

3. Хондроитин-6-сульфат.

4. Дерматансульфат.

5. Кератансульфат.

6. Гепарансульфат.

7. Гепарин.

Гиалуроновая кислота.

Мономер построен из глюкуроновой кислоты и N - ацетилглюкозамина. Гиалуроновая кислота может находиться и в свободном виде, и в составе сложных агрегатов. Это единственный представитель глюкозаминогликанов, который не сульфатирован.

Хондроитин-сульфаты.

Хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения остатка серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой кислоты и N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.

Дерматан-сульфат.

Его мономер построен из идуроновой кислоты и галактозамин-4-сульфата. Он является одним из структурных компонентов хрящевой ткани.

Кератан-сульфатсостоит из галактозы и N-ацетилглюкозамин-6-сульфата.

Гепаран-сульфат и гепарин.

Они сильно сульфатированы (в мономере 2-3 остатка серной кислоты). В состав их входят глюкуронат-2-сульфат и N- ацетилглюкозамин-6-сульфат.

Длинные полисахаридные цепи складываются в глобулы.Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно большой объем. Глюкозаминогликаны являются гидрофильными соединениями, содержат много гидроксильных групп, имеют значительный отрицательный заряд (много карбоксильных и сульфогрупп), что способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать воду. Глюкозаминогликаны входят в состав сложных белков, которые называются протеогликанами. Глюкозаминогликаны составляют в протеогликанах 95 % их веса. Остальные 5 % веса - это белок. В клетке протеогликаны связаны с гиалуроновой кислотой, образуя сложный надмолекулярный комплекс. Кроме протеогликанов, основное вещество содержит гликопротеины.

Углеводный компонент гликопротеинов - это олигосахарид, состоящий 10-15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды: манноза, рамноза, фукоза, арабиноза, ксилоза. На конце этого олигосахарида имеется еще одно производное моносахаридов: сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация сиаловых кислот - значит, идет распад межклеточного матрикса. Это бывает при воспалении.

Гликопротеины делят на 2 группы:

1. растворимые;

2. нерастворимые.

Растворимые гликопротеины представлены особым белком - фибронектином. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами (коллагеном), гликолипидами клеточных мембран. Поэтому фибронектин называют "молекулярным клеем". Он обычно располагается на поверхности фибробластов и участвует в адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.

К нерастворимым гликопротеинам относится ламинин. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран. Нерастворимые гликопротеины образуют "каркас", "строму" межклеточного матрикса.

Синтез коллагена.

Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.

Й этап

Протекает на рибосомах, синтезируется молекула - предшественник: препроколлаген.

Й этап

С помощью сигнального пептида "пре" транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется "пре" - образуется "проколлаген".

Й этап

Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ).

При недостатке витамина "С"- аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.

Й этап

Посттрасляционная модификация- гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.

Й этап

Заключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности – аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.

Й этап

Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.

Й этап

Ковалентное "сшивание" молекулы тропоколлагена по принципу "конец-в-конец" с образованием нерастворимого коллагена. Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь. Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.

Й этап

Ассоциация молекул нерастворимого коллагена по принципу "бок-в-бок". Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.

Нервная ткань. Особенности химического состава нервной ткани. Энергетический обмен нервной ткани.

По своему соcтаву и процессам метаболизма нервная ткань значительно отличается от других тканей.

Центральная функциональная клетка нервной ткани - нейрон - связана с помощью дендритов и аксонов с такими же клетками и клетками других типов, например, с секреторными и мышечными клетками. Клетки разделены синаптическими щелями. Связь между клетками осуществляется путем передачи сигнала. Сигнал проходит от тела нейрона по аксону до синапса. В синаптическую щель выделяется вещество-медиатор. Медиатор вступает в связь с рецепторами на другой стороне синаптической щели. Это обеспечивает восприятие сигнала и генерацию нового сигнала в клетке-акцепторе.

Функции нервной ткани

1. Генерация электрического сигнала (нервного импульса)

2. Проведение нервного импульса

3. Запоминание и хранение информации.

4. Формирование эмоций и поведения.

5. Мышление.

Особенности химического состава и метаболизма нервной ткани

Специфику нервной ткани определяет гематоэнцефалический барьер (ГЭБ). ГЭБ имеет избирательную проницаемость для различных метаболитов, а также способствует накоплению некоторых веществ в нервной ткани. Например, в нервной ткани на долю глутамата и аспартата приходится примерно 70-75% от общего количества аминокислот. Таким образом, внутренняя среда нервной ткани намного отличается по химическому составу от других тканей.

Липиды нервной ткани и их функции

Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое.

Особенность липидного состава нервной ткани: есть фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС), нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ГМГ-КоА-редуктазы - ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.

Липиды нервной ткани выполняют следующие функции:

1. Структурная: входят в состав клеточных мембран нейронов.

2. Функция диэлектриков (обеспечивают надежную электрическую изоляцию).

3. Защитная. Ганглиозиды являются очень активными антиоксидантами - ингибиторами перекисного окисления липидов (ПОЛ). При повреждении ткани мозга ганглиозиды способствуют ее заживлению.

4. Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.

Метаболизм углеводов и особенности энергетического обеспечения нервной ткани.

В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм. При этом энергетические возможности нервной ткани ограничены.

1. Основной путь получения энергии - только аэробный распад глюкозы. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.

2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.

3. Постоянный и непрерывный притокглюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани очень мало (0,1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.

4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. Она обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц.

5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ПФЦ.

Энергия АТФ в нервной ткани используется неравномерно во времени. Так же, как и скелетные мышцы, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Поэтому существует еще одна особенность:

6. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи:

Нервная ткань. Особенности химического состава нервной ткани. Энергетический обмен нервной ткани. - student2.ru

Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ - равновесие реакции сдвигается влево, то есть образуется АТФ.

Наши рекомендации