Морфология клетки. структурные компоненты
ЦИТОПЛАЗМЫ И ЯДРА. КЛЕТОЧНЫЕ МЕМБРАНЫ.
ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ ПЛАЗМоЛЕМУ.
1.1. ЗНАЧЕНИЕ ТЕМЫ. Цитоплазма и цитоскелет. Циклоз. Органеллы цитоплазмы – мембранные и немембранные, назначение и принципы функционирования. Включения в клетках и их функции.
Ядро – центральный информативный аппарат клетки. Структура интерфазного ядра. Хромосомный и геномный уровни организации материала. Хроматин: эухроматин и гетерохроматин. Методы изучения структуры и функционирования клетки.
1.2. ЦЕЛИ ЗАНЯТИЯ. Общая: Структурно- функциональная организация эукариотической клетки. Химический состав клетки: макро- и микроэлементы. Вода, значение связей в процессах жизнедеятельности клетки. Органические структуры – углесовместимость вещества живых организмов.
1.3. КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ:
1.3.1. Уметь находить и определять на микропрепаратах клетки и их основные компоненты.
1.3.2. Получить представление о субмикроскопическом строении клеточных структур.
ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Основными структурными компонентами эукариотических клеток являются клеточные мембраны, ядро, цитоплазма с цитоскелетом, органеллы и включения (рис. 2).
1. Клеточная мембрана или плазмалемма, представляет тонкую биологическую пленку, которая ограничивает клетку. все известные биологические мембраны образуют замкнутые пространства - компартменты. Таким образом, главная функция клеточной мембраны - обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.
Рис. 2. Современная схема строения клетки
по данным электронной микроскопии:
1 — цитоплазматический матрикс; 2 — комплекс Гольджи; 3 — клеточный центр; 4 — эндоплазматическая сеть; 5 — митохондрия; 6 — ядро; 7 — ядрышко; 8 — кариоплазма; 9 — хроматин; 10 – лизосома; 11 –экзоцитоз через цитоплазматическую мембрану, 12 – микроворсинки
Основу плазмалеммы составляет двойной слой липидов, расположенных перпендикулярно поверхности. Липиды представлены фосфолипидами и холестеролом. Именно они обеспечивают структурную целостность мембраны. Оба вида липидов амфипатические, один конец молекулы - “головка’'’ - полярный гидрофильный, другой конец - “двойной хвост” неполярный гидрофобный. Если гидрофильную головку отделить от молекулы, она растворится в воде. Гидрофобный хвост, подобно растительному маслу, в воде не растворим.
Гидрофильные головки липидов обращены кнаружи, а гидрофобные концы спрятаны вовнутрь.
Липидный бислой плазмалеммы прикрыт с обеих сторон белками, которые подразделяются на два класса. Первый класс - трансмембранные белки. Определенная часть их молекулы встроена в двойной липидный слой и пронизывает его насквозь.
Таким образом в мембране возникают белковые поры. Второй класс составляют периферические белки, которые не встроены в липиды, а находятся на поверхности. Здесь они вступают в связь с определенными трансмембранными белками.
Тем не менее, их можно отделить от мембраны и растворить в воде, в то время как трансмембранные белки не отделимы от липидов и не растворимы в водной среде. Периферические белки сконцентрированы на внутренней, а также наружной поверхности плазмалеммы, где они преобладают. На наружной поверхности к ним примыкают углеводы, формирующие тонкое покрытие клетки - гликокаликс.
Мембранный транспорт различных оформленных частиц в клетке происходит путемэндоцитоза и экзоцитоза.
При эндоцитозе клетки поглощают макромолекулы и частицы, окружая их небольшим участком клеточной мембраны. Последняя впячивается внутрь клетки, образуя везикулы (пузырьки). Если везикулы мелкие и содержат внеклеточную жидкость, процесс называетсяпиноцитоз.
Если же они содержат крупные оформленные частицы, то формируются фагосомы, а явление известно, какфагоцитоз.
Экзоцитоз - это выход веществ из клетки в виде гранул секрета или вакуолей с клеточной жидкостью.
2. Ядро- центральный аппарат клетки, с которым связано хранение и передача генетической информации, обмен веществ, движение и размножение.
Форма ядра чаще округлая или вытянутая, реже дольчатая. От цитоплазмы его отделяет ядерная оболочка. Она состоит из наружной и внутренней ядерных мембран, разделенных бесструктурным веществом. Мембраны имеют многочисленные поры, обеспечивающие избирательную связь с цитоплазмой. Каждая пора встроена в крупную дисковидную структуру, называемуюпоровый комплекс ядерной оболочки. Заполнено ядро гомогенной массой - нуклеоплазмой. В ее состав входят нуклеиновые кислоты и белки.
Комплекс ядерной ДНК со структурными белками гистонами и негистоновыми белками, содержащимися в больших количествах, называютхроматином. На цитологических препаратах хроматин имеет вид глыбок различной величины и формы. В период деления клетки в ядре выявляются митотические хромосомы.Они выглядят как короткие палочковидные тельца, обладающие особой индивидуальностью и функцией.
Важным компонентом ядра является одно или несколькоядрышек. Это мелкие круглые тельца с высоким содержанием РНК и белка. Ядрышковая РНК участвует в регуляции синтетических процессов в цитоплазме клетки.
3. Цитоплазма объединяет все живое вещество клетки, за исключением ядра и ограничивающих клетку мембран. Гомогенная бесструктурная масса цитоплазмы получила названиегиалоплазмы. В ней во взвешенном состоянии находятсяорганеллы и включения. Агрегатное состояние цитоплазмы бывает жидкое - золь и вязкое - гель. Основу цитоплазмы формирует цитоскелет клетки.
Цитоскелет - сложная сеть микротрубочек и белковых филаментов (нитей). Микротрубочки играют роль направляющих. Это своеобразные рельсы, по которым передвигаются органеллы. Филаменты выполняют сократительную функцию.
Цитоплазма и некоторые структуры, расположенные в ней, могут перемещаться. Данное явление известно какток цитоплазмы. Он особенно интенсивен в растительных клетках по причине их крупных размеров и жесткости стенок. Движения цитоплазмы зависят от состояния среды клетки и температуры, световых стимулов, химических компоненов и требует затрат энергии.
4. Органеллы и включения находятся в цитоплазме.Органеллы - это постоянные высокодифференцированные внутриклеточные образования, выполняющие определенные функции. Внутреннее пространство любой внутриклеточной органеллы, ее компартмент, ограничено специализированными мембранами. Выделяют две большие группы органелл.
1. Органеллы общего значения - обязательны для жизнедеятельности всех клеток.
2. Специальные органеллы - выполняют направленные функции в клетках с узкой специализацией (реснички и жгутики, миофибриллы и нейрофибриллы).
По принципу организации внутриклеточные компоненты подразделяются на одномембранные и двумембранные.
Одномембранные компоненты имеют вид каналов, цистерн, пузырьков ограниченных одной мембраной и тесно взаимосвязанных. Сюда можно отнести: а) эндоплазматический ретикулум; б) комплекс Гольджи; в) лизосомы; г) вакуоли у растительных клеток и некоторых простейших.
Двумембранные компоненты - это митохондрии и пластиды. Наружная мембрана их всегда гладкая, внутренняя образует выросты, имеющие важное функциональное значение. Систему двойных мембран имеет также ядро - центральный аппарат клетки. Ядерные мембраны содержат поры.
Немембранные структуры клетки немногочисленны и в той или иной мере связаны с системой мембран. В число их входят: а) рибосомы, состоящие из двух субъединиц; б) центросома, локализованная вблизи ядра; в) органеллы движения клеток – жгутики, реснички и миофибриллы; г) разнообразные клеточные включения.
Органеллы общего значения
Эндоплазматический ретикулум (ЭР) - разветвленная внутриклеточная структура, представленная системой субмикроскопических канальцев с расширениями - цистернами.. Существует два типа ЭР.
Гранулярный ЭР, мембраны которого содержат рибосомы (рис. 4) .
Рибосомы - это ультрамикроскопические сферические гранулы, состоящие из двух половинок - большой и малой субъединиц, а также рибосомальной РНК. Главное назначение их - участие в синтезе белка.
Гладкий ЭР несет мембраны, лишенные рибосом. Здесь происходит синтез липидов и углеводов. ЭР объединен с ядром клетки, поскольку наружная мембрана ядра непосредственно переходит в мембраны ЭР. Гладкий и гранулярный ЭР связаны друг с другом, но отличаются по составу содержащихся в них белков.
Митохондрии. В конце прошлого века в цитоплазме различных клеток были выявлены нитевидные и: гранулярные структуры. Ученый Бенда назвал их митохондрии, от греческого “митос” - нить и “хондрос” - зерно. Как показала электронная микроскопия, митохондрии имеют наружную и внутреннюю мембрану (рис. 5).
|
Комплекс Гольджи.Указанная органелла названа именем открывшего ее итальянца Карелло Гольджи в 1896 г. По данным электронной микроскопии он состоит издиктиосом. Каждая диктиосома представляет стопку плоских мешочков-цистерн (рис. 6). Число цистерн в одной диктиосоме 5 - 7. От краев цистерн отделяются микропузырьки.
Основная функция комплекса Гольджи заключается в накоплении и конденсации продуктов синтезируемых эндоплазматическим ретикулумом и в образовании лизосом.
Лизосомы. Лизосомы представляют сферические частицы размерами 0,5 - 2,0 мкм. Они имеют плотную липопротеиновую мембрану. содержат большой набор гидролитических ферментов. Они необходимы для процессов внутриклеточного пищеварения.
Другой важной функцией лизосом являетсяавтолиз- посмертное растворение структурных компонентов клетки под действием ферментов лизосом.
Центросома.Открыл эту структуру голландский ученый Ван-Бенеден, в 1876 г., но название предложил цитолог Бовери, опять-таки, используя греческую терминологию: “центрум” - центр и “сома” - тело. Типичная центросома представлена двумя центриолями. Они соединены перемычкой центродесмозой и окружены «лучистой» сферой - астросферой. При электронной микроскопии центриоли имеют вид цилиндра, стенки каждого образованы микротрубочками, собранными попарно. Центросома обеспечивает процесс митоза, формируя митотический аппарат клетки.
Пластиды – органеллы свойственные автотрофным клеткам, способных к синтезу органических соединений. Пластиды отличаются по окраске:
1) бесцветные – лейкопласты,
2) окрашенные в зеленый цвет – хлоропласты,
3) различные желто-красные оттенки – хромопласты.
Все пластиды имеют мембранный принцип строения. Наиболее сложно организованы хлоропласты, содержащие зеленый пигмент хлорофилл, необходимый для фотосинтеза. Тело хлоропласта состоит из белков и липидов. Внутренняя мембрана хлоропласта ограничивает большую центральную область называемую строма. Она пронизана системой параллельных дисковидных мешочков, возникших в результате впячивания внутренней мембраны. Этотилакоиды, содержащие фотосинтезирующую систему поглощения света и цепь транспорта электронов. В строме также находятся рибосомы, крахмальные зерна и цитоплазматическая ДНК.
Органеллы специального значения
Реснички и жгутики встречаются у одноклеточных организмов (бактерии, простейшие) и у клеток в составе тканей (клетки эпителия трахеи). Они связаны с элементами движения, которые характерны определенным видам клеток.
Миофибриллы имеются в мышечных клетках и обеспечивают сокращение мыщц.
Нейрофибриллы - являются обязательным компонентом многих нервных клеток и их отростков. Участвуют в передаче возбуждения.
Включения - непостоянные компоненты клетки, возникающие в результате внутриклеточного метаболизма или других процессов жизнедеятельности клетки.
В функциональном отношении все включения подразделяются на три группы: трофические, секреторные и специальные,
Трофические включения отражают повседневный метаболизм клетки. Они представлены гранулами гликогена, белковыми зернами, каплями жира.
Секреторные включения характерны, в основном, для железистых клеток.
Специальные включения присутствуют в высокоспециализированных клетках. К этой группе относят гранулы пигмента меланина, плотно заполняющего цитоплазму меланоцитов - особых клеток с защитной функцией.
Клеточная мембрана.
Клетка со всех сторон окружена плотно прилегающей мембраной, которая приспосабливается к любому изменению её формы с кажущейся лёгкой пластичностью. Эта мембрана называется плазматической мембраной, или плазмалеммой (греч. plasma - форма; lemma - оболочка).
Клеточная мембрана или плазмолема,представляет тонкую биологическую пленку, которая ограничивает клетку. Все известные биологические мембраны образуют замкнутые пространства – компартменты. Таким образом, главная функция клеточной мембраны – обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточной.
Все клетки отделены от окружающей среды плазматической мембраной. Клеточные мембраны не являются непроницаемыми барьерами. Клетки способны регулировать количество и тип проходящих через мембраны веществ, а часто и направление движения.
Общая характеристика клеточных мембран:
- Разные типы мембран различаются по своей толщине, но в большинстве случаев толщина мембран составляет 5 - 10 нм; например, толщина плазматической мембраны равна 7,5 нм.
- Мембраны - это липопротеиновые структуры (липид + белок). К некоторым липидным и белковым молекулам на внешних поверхностях присоединены углеводные компоненты (гликозильные группы). Обычно на долю углевода в мембране приходится от 2 до 10%.
- Липиды образуют бислой. Это объясняется тем, что их молекулы имеют полярные головы и неполярные хвосты.
- Мембранные белки выполняют различные функции: транспорт веществ, ферментативная активность, перенос электронов, преобразование энергии, рецепторная активность.
- На поверхностях гликопротеинов находятся гликозильные группы - разветвленные олигосахаридные цепи, напоминающие антенны. Эти гликозильные группы связаны с механизмом распознавания.
- Две стороны мембраны могут отличаться одна от другой и по составу, и по свойствам.
Рис 7.В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная в 1972 году Сингером и Николсоном (Singer, Nicolson). Согласно этой модели мембрана состоит из бислоя липидов, в котором плавают (или закреплены) белковые молекулы, образуя в нём своеобразную мозаику. Мембранные белки могут пронизывать бислой насквозь (интегральный белок - 1), примыкать к бислою (периферический белок - 2) или погружаться в него. Многие белки мембраны являются гликопротеинами (3), а мембранообразующие липиды - гликолипидами (4). на схеме также показаны: холестерол (5); углевод (6); элементы цитоскелета (7).
Функции клеточных мембран:
· ограничение клеточного содержимого от окружающей среды
· регуляция обменных процессов на границе "клетка - окружающая среда"
· передача гормональных и внешних сигналов, контролирующих рост и дифференцировку клеток
· участие в процессе клеточного деления.
Типы проникновения веществ в клетку через мембраны:
Транспорт через мембраны жизненно важен, т.к. он обеспечивает:
· соответствующее значение рН и концентрации ионов
· доставку питательных веществ
· выведение токсичных отходов
· секрецию различных полезных веществ
· создание ионных градиентов, необходимых для нервной и мышечной активности.
Регуляция обмена веществ через мембраны зависит от физических и химических свойств мембран и идущих через них ионов или молекул.
Вода - основное вещество, поступающее в клетки и выходящее из них. Движение воды как в живых системах, так и в неживой природе подчиняется законам объёмного потока и диффузии. Объемный поток - это общее движение воды (или другой жидкости), которое происходит благодаря разнице в потенциальной энергии воды, обычно называемой водным потенциалом.
Другой источник водного потенциала - давление. Вода перемещается из области более высокого водного потенциала в область более низкого независимо от причины, создающей это различие. Например, вода, находящаяся на вершине водопада, обладает потенциальной энергией. При падении воды, ее потенциальная энергия переходит в кинетическую, которая может быть превращена в механическую и способна совершить работу.
Диффузия - это распространение вещества в результате движения их ионов или молекул, которые стремятся выровнять свою концентрацию в системе.
Признаки диффузии: каждая молекула движется независимо от других; эти движения хаотичны. Диффузия - процесс медленный. Но она может быть ускорена в результате тока плазмы, метаболической активности.
Обычно вещества синтезируются в одном участке клетки, а потребляются в другом. Т. о. устанавливается концентрационный градиент, и вещества могут диффундировать по градиенту из места образования к месту потребления.
Органические молекулы, как правило, полярны. Поэтому они не могут свободно диффундировать через липидный барьер клеточных мембран. Однако двуокись углерода, кислород и другие вещества, растворимые в липидах, проходят через мембраны свободно. В обе стороны проходит вода и некоторые мелкие ионы.
Пропуская воду, клеточные мембраны в то же время не пропускают большинство растворённых в ней веществ. Такие мембраны называют полупроницаемыми, а диффузию через такие мембраны - осмосом.
Эндоцитоз и экзоцитоз
Эндоцитоз и экзоцитоз - это два активных процесса, посредством которых различные материалы транспортируются через мембрану либо в клетки (эндоцитоз), либо из клеток (экзоцитоз). При эндоцитозе плазматическая мембрана образует впячивания или выросты, которые затем, отшнуровываясь, превращаются в пузырьки или вакуоли. Различают два типа эндоцитоза:
1. Фагоцитоз - поглощение твердых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами.
Рис 8.Макрофаг, фагоцитирующий
две красные кровяные клетки
2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Часто при этом образуются очень мелкие пузырьки (микропиноцитоз).
Экзоцитоз - процесс, обратный эндоцитозу. Таким способом выводятся гормоны, полисахариды, белки, жировые капли и другие продукты клетки. Они заключаются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Обе мембраны сливаются, и содержимое пузырька выводится в среду, окружающее клетку.