Морфология клетки. структурные компоненты

ЦИТОПЛАЗМЫ И ЯДРА. КЛЕТОЧНЫЕ МЕМБРАНЫ.

ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ ПЛАЗМоЛЕМУ.

1.1. ЗНАЧЕНИЕ ТЕМЫ. Цитоплазма и цитоскелет. Циклоз. Органеллы цитоплазмы – мембранные и немембранные, назначение и принципы функционирования. Включения в клетках и их функции.

Ядро – центральный информативный аппарат клетки. Структура интерфазного ядра. Хромосомный и геномный уровни организации материала. Хроматин: эухроматин и гетерохроматин. Методы изучения структуры и функционирования клетки.

1.2. ЦЕЛИ ЗАНЯТИЯ. Общая: Структурно- функциональная организация эукариотической клетки. Химический состав клетки: макро- и микроэлементы. Вода, значение связей в процессах жизнедеятельности клетки. Органические структуры – углесовместимость вещества живых организмов.

1.3. КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ:

1.3.1. Уметь находить и определять на микропрепаратах клетки и их основные компоненты.

1.3.2. Получить представление о субмикроскопическом строении клеточных структур.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Основными структур­ными компонентами эукариотических клеток являются клеточные мембраны, ядро, цитоплаз­ма с цитоскелетом, органеллы и включения (рис. 2).

1. Клеточная мембрана или плазмалемма, представляет тонкую биологическую пленку, которая ограничивает клетку. все известные биологические мембраны образуют замкнутые пространства - компартменты. Таким образом, главная функция клеточной мембраны - обес­печить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.

морфология клетки. структурные компоненты - student2.ru Рис. 2. Современная схема строения клетки

по данным электронной микроскопии:

1 — цитоплазматический матрикс; 2 — комплекс Гольджи; 3 — клеточный центр; 4 — эндоплазматическая сеть; 5 — митохондрия; 6 — ядро; 7 — ядрышко; 8 — кариоплазма; 9 — хроматин; 10 – лизосома; 11 –экзоцитоз через цитоплазматическую мембрану, 12 – микроворсинки

Основу плазмалеммы составляет двойной слой липидов, расположен­ных перпендикулярно поверхности. Липиды представлены фосфолипида­ми и холестеролом. Именно они обеспечивают структурную целостность мембраны. Оба вида липидов амфипатические, один конец молекулы - “го­ловка’'’ - полярный гидрофильный, другой конец - “двойной хвост” непо­лярный гидрофобный. Если гидрофильную головку отделить от молеку­лы, она растворится в воде. Гидрофобный хвост, подобно растительному маслу, в воде не растворим.

Гидрофильные головки липидов обращены кнаружи, а гидрофоб­ные концы спрятаны вовнутрь.

Липидный бислой плазмалем­мы прикрыт с обеих сторон белками, которые подразделяются на два клас­са. Первый класс - трансмембранные белки. Определенная часть их моле­кулы встроена в двойной липидный слой и пронизывает его насквозь.

Таким образом в мембране воз­никают белковые поры. Второй класс составляют периферические белки, которые не встроены в липи­ды, а находятся на поверхности. Здесь они вступают в связь с опреде­ленными трансмембранными белка­ми.

Тем не менее, их можно отделить от мембраны и растворить в воде, в то время как трансмембранные белки не отделимы от липидов и не ра­створимы в водной среде. Периферические белки сконцентрированы на внутренней, а также наружной поверхности плазмалеммы, где они преоб­ладают. На наружной поверхности к ним примыкают углеводы, форми­рующие тонкое покрытие клетки - гликокаликс.

Мембранный транспорт различных оформленных частиц в клетке происходит путемэндоцитоза и экзоцитоза.

При эндоцитозе клетки поглощают макромолекулы и час­тицы, окружая их не­большим участком клеточной мембраны. Последняя впячивает­ся внутрь клетки, образуя везикулы (пузырьки). Если везикулы мел­кие и содержат внеклеточную жидкость, процесс называетсяпиноцитоз.

Если же они содержат крупные оформленные частицы, то форми­руются фагосомы, а явление известно, какфагоцитоз.

морфология клетки. структурные компоненты - student2.ru Экзоцитоз - это выход веществ из клетки в виде гранул секрета или вакуолей с клеточной жидкостью.

2. Ядро- центральный аппарат клетки, с которым связано хранение и передача генетической информации, обмен веществ, движение и размножение.

морфология клетки. структурные компоненты - student2.ru Форма ядра чаще округлая или вытянутая, реже дольча­тая. От цитоплазмы его отделяет ядерная оболочка. Она состоит из наружной и внутренней ядерных мембран, разделенных бесструктур­ным веществом. Мембраны имеют многочисленные поры, обеспечи­вающие избирательную связь с цитоплазмой. Каждая пора встроена в крупную дисковидную структуру, называемуюпоровый комплекс ядерной оболочки. Заполнено ядро гомогенной массой - нуклеоплазмой. В ее состав входят нуклеиновые кислоты и белки.

Комплекс ядерной ДНК со структурными белками гистонами и негистоновыми белками, содержащимися в больших количествах, называютхромати­ном. На цитологических препаратах хроматин имеет вид глыбок различной величины и формы. В период деления клетки в ядре выявля­ются митотические хромосомы.Они выглядят как короткие палочковидные тельца, обладающие особой индивидуальностью и функци­ей.

Важным компонентом ядра является одно или несколькоядры­шек. Это мелкие круглые тельца с высоким содержанием РНК и бел­ка. Ядрышковая РНК участвует в регуляции синтетических процессов в цитоплазме клетки.

3. Цитоплазма объединяет все живое вещество клетки, за исключе­нием ядра и ограничивающих клетку мембран. Гомогенная бесструктурная масса цитоплазмы получила названиегиалоплазмы. В ней во взвешенном состоянии находятсяорганеллы и включения. Агрегатное состояние цитоплазмы бывает жидкое - золь и вязкое - гель. Основу цитоплазмы формирует цитоскелет клетки.

Цитоскелет - слож­ная сеть микротрубочек и белковых филаментов (нитей). Микротру­бочки играют роль направляющих. Это своеобразные рельсы, по ко­торым передвигаются органеллы. Филаменты выполняют сократи­тельную функцию.

Цитоплазма и некоторые структуры, расположен­ные в ней, могут перемещаться. Данное явление известно какток цитоплазмы. Он особенно интенсивен в растительных клетках по причине их крупных размеров и жесткости стенок. Движения цитоплазмы зависят от состояния среды клетки и темпера­туры, световых стимулов, химических компоненов и требует затрат энер­гии.

4. Органеллы и включения находятся в цитоплазме.Органеллы - это постоянные высокодифференцированные внутриклеточные обра­зования, выполняющие определенные функции. Внутреннее простран­ство любой внутриклеточной органеллы, ее компартмент, ограничено специализированными мембранами. Выделяют две большие группы органелл.

1. Органеллы общего значения - обязательны для жизнедеятельности всех клеток.

2. Специальные орга­неллы - выполняют направленные функции в клетках с узкой спе­циализацией (реснички и жгутики, миофибриллы и нейрофибриллы).

По принципу организации внутриклеточные компоненты подразделяются на одномембранные и двумембранные.

Одномембранные компоненты имеют вид каналов, цистерн, пузырьков ограниченных одной мембраной и тесно взаимосвязанных. Сюда можно отнести: а) эндоплазматический ретикулум; б) комплекс Гольджи; в) лизосомы; г) вакуоли у растительных клеток и некоторых простейших.

Двумем­бранные компоненты - это митохондрии и пластиды. Наружная мем­брана их всегда гладкая, внутренняя образует выросты, имеющие важ­ное функциональное значение. Систему двойных мембран имеет так­же ядро - центральный аппарат клетки. Ядерные мембраны содержат поры.

Немембранные структуры клетки немногочисленны и в той или иной мере связаны с системой мембран. В число их входят: а) рибосомы, состоящие из двух субъединиц; б) центросома, локализованная вблизи ядра; в) органеллы движения клеток – жгутики, реснички и миофибриллы; г) разнообразные клеточные включения.

Органеллы общего значения

Эндоплазматический ретикулум (ЭР) - разветвленная внутрикле­точная структура, представленная системой субмикроскопических канальцев с расширениями - цистернами.. Существует два типа ЭР.

морфология клетки. структурные компоненты - student2.ru морфология клетки. структурные компоненты - student2.ru Гранулярный ЭР, мембраны которого содержат рибосомы (рис. 4) .

Рибосомы - это ультрамикроскопические сферические гранулы, состоящие из двух половинок - большой и малой субъединиц, а также рибосомальной РНК. Главное назначение их - участие в синтезе белка.

Гладкий ЭР несет мембраны, лишенные рибосом. Здесь происходит синтез липидов и углеводов. ЭР объединен с ядром клетки, поскольку наруж­ная мембрана ядра непосредственно переходит в мембраны ЭР. Глад­кий и гранулярный ЭР связаны друг с другом, но отличаются по со­ставу содержащихся в них белков.

морфология клетки. структурные компоненты - student2.ru Митохондрии. В конце прошлого века в цитоплазме различных кле­ток были выявлены нитевидные и: гранулярные структуры. Ученый Бенда назвал их митохондрии, от греческого “митос” - нить и “хондрос” - зерно. Как по­казала электронная микроскопия, митохондрии имеют наружную и внутреннюю мембрану (рис. 5).

Рис 6. Схема комплекса Гольджи: 1 – формирующий полюс диктиосомы, 2 – секретирующий полюс диктиосомы, 3 – мешочки-цистерны, 4 – микропузырьки, 5 – лизосома.  
морфология клетки. структурные компоненты - student2.ru морфология клетки. структурные компоненты - student2.ru Наружная мембрана напоминает сито, прони­цаемое для небольших белков. Внутренняя мембрана образует мно­гочисленные складки -кристы, в виде гребней, вдающихся во внут­реннюю полость, называемую матрикс. Промежуток между наружной и внутренней мембраной называют межмембранным пространством. На кристах содержатся дыхательные ферменты, необходимые для окис­лительного фосфорилирования. Результатом его является образование АТФ и выделение боль­шого количества энер­гии, необходимой для жизнедеятельности кле­ток. Митохондрии со­держат цитоплазматическую ДНК, отличную от ДНК ядра.

Комплекс Гольджи.Указанная органелла названа именем открывше­го ее итальянца Карелло Гольджи в 1896 г. По данным электронной микроскопии он состоит издиктиосом. Каждая диктиосома представляет стопку плоских мешочков-цистерн (рис. 6). Число цистерн в одной диктиосоме 5 - 7. От краев цистерн отделяются микропузырьки.

Основная функция комплекса Гольджи заключается в накоплении и конденсации продуктов синтезируемых эндоплазматическим ретикулумом и в образовании лизосом.

Лизосомы. Лизосомы представляют сферические частицы размерами 0,5 - 2,0 мкм. Они имеют плотную липопротеиновую мем­брану. содержат большой набор гидролитических ферментов. Они необ­ходимы для процессов внутриклеточного пищеварения.

Другой важной функцией лизосом являетсяавтолиз- посмертное растворение структурных компонентов клетки под действием ферментов лизосом.

Центросома.Открыл эту структуру голландский ученый Ван-Бенеден, в 1876 г., но название предложил цитолог Бовери, опять-таки, исполь­зуя греческую терминологию: “центрум” - центр и “сома” - тело. Ти­пичная центросома представлена двумя центриолями. Они соединены перемычкой центродесмозой и окружены «лучистой» сферой - астросферой. При электронной микроскопии центриоли имеют вид ци­линдра, стенки каждого образованы микротрубочками, собранными попарно. Центросома обеспечивает процесс митоза, формируя митотический аппарат клетки.

Пластиды – органеллы свойственные автотрофным клеткам, способных к синтезу органических соединений. Пластиды отличаются по окраске:

1) бесцветные – лейкопласты,

2) окрашенные в зеленый цвет – хлоропласты,

3) различные желто-красные оттенки – хромопласты.

Все пластиды имеют мембранный принцип строения. Наиболее слож­но организованы хлоропласты, содержащие зеленый пигмент хлоро­филл, необходимый для фотосинтеза. Тело хлоропласта состоит из белков и липидов. Внутренняя мембрана хлоропласта ограничивает большую центральную область называемую строма. Она пронизана системой параллельных дисковидных мешочков, возникших в резуль­тате впячивания внутренней мембраны. Этотилакоиды, содержащие фотосинтезирующую систему поглощения света и цепь транспорта электронов. В строме также находятся рибосомы, крахмальные зерна и цитоплазматическая ДНК.

Органеллы специального значения

Реснички и жгутики встреча­ются у одноклеточных организмов (бактерии, простейшие) и у клеток в составе тканей (клетки эпителия трахеи). Они связаны с элементами движения, которые характерны определенным видам клеток.

Миофибриллы имеются в мышечных клетках и обеспечивают сокращение мыщц.

Нейрофибриллы - являются обязательным компонентом многих нервных клеток и их отростков. Участвуют в передаче возбуждения.

Включения - непостоянные компоненты клетки, возникающие в результате внутриклеточного метаболизма или других процессов жизнедеятельности клетки.

В функциональном отношении все включения подразделяются на три группы: трофические, секреторные и специальные,

Трофические включения отражают повседневный метаболизм клетки. Они представлены гранулами гликогена, белковыми зернами, каплями жира.

Секреторные включения характерны, в основном, для желези­стых клеток.

Специальные включения присутствуют в высокоспециализированных клетках. К этой группе относят гранулы пигмента меланина, плотно заполняющего цитоплазму меланоцитов - особых клеток с защитной функцией.

Клеточная мембрана.

Клетка со всех сторон окружена плотно прилегающей мембраной, которая приспосабливается к любому изменению её формы с кажущейся лёгкой пластичностью. Эта мембрана называется плазматической мембраной, или плазмалеммой (греч. plasma - форма; lemma - оболочка).

Клеточная мембрана или плазмолема,представляет тонкую биологическую пленку, которая ограничивает клетку. Все известные биологические мембраны образуют замкнутые пространства – компартменты. Таким образом, главная функция клеточной мембраны – обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточной.

Все клетки отделены от окружающей среды плазматической мембраной. Клеточные мембраны не являются непроницаемыми барьерами. Клетки способны регулировать количество и тип проходящих через мембраны веществ, а часто и направление движения.

Общая характеристика клеточных мембран:

  1. Разные типы мембран различаются по своей толщине, но в большинстве случаев толщина мембран составляет 5 - 10 нм; например, толщина плазматической мембраны равна 7,5 нм.
  2. Мембраны - это липопротеиновые структуры (липид + белок). К некоторым липидным и белковым молекулам на внешних поверхностях присоединены углеводные компоненты (гликозильные группы). Обычно на долю углевода в мембране приходится от 2 до 10%.
  3. Липиды образуют бислой. Это объясняется тем, что их молекулы имеют полярные головы и неполярные хвосты.
  4. Мембранные белки выполняют различные функции: транспорт веществ, ферментативная активность, перенос электронов, преобразование энергии, рецепторная активность.
  5. На поверхностях гликопротеинов находятся гликозильные группы - разветвленные олигосахаридные цепи, напоминающие антенны. Эти гликозильные группы связаны с механизмом распознавания.
  6. Две стороны мембраны могут отличаться одна от другой и по составу, и по свойствам.

морфология клетки. структурные компоненты - student2.ru

Рис 7.В настоящее время наибольшим признанием пользуется жидкостно-мозаичная модель мембраны, предложенная в 1972 году Сингером и Николсоном (Singer, Nicolson). Согласно этой модели мембрана состоит из бислоя липидов, в котором плавают (или закреплены) белковые молекулы, образуя в нём своеобразную мозаику. Мембранные белки могут пронизывать бислой насквозь (интегральный белок - 1), примыкать к бислою (периферический белок - 2) или погружаться в него. Многие белки мембраны являются гликопротеинами (3), а мембранообразующие липиды - гликолипидами (4). на схеме также показаны: холестерол (5); углевод (6); элементы цитоскелета (7).

Функции клеточных мембран:

· ограничение клеточного содержимого от окружающей среды

· регуляция обменных процессов на границе "клетка - окружающая среда"

· передача гормональных и внешних сигналов, контролирующих рост и дифференцировку клеток

· участие в процессе клеточного деления.

Типы проникновения веществ в клетку через мембраны:
Транспорт через мембраны жизненно важен, т.к. он обеспечивает:

· соответствующее значение рН и концентрации ионов

· доставку питательных веществ

· выведение токсичных отходов

· секрецию различных полезных веществ

· создание ионных градиентов, необходимых для нервной и мышечной активности.

Регуляция обмена веществ через мембраны зависит от физических и химических свойств мембран и идущих через них ионов или молекул.
Вода - основное вещество, поступающее в клетки и выходящее из них. Движение воды как в живых системах, так и в неживой природе подчиняется законам объёмного потока и диффузии. Объемный поток - это общее движение воды (или другой жидкости), которое происходит благодаря разнице в потенциальной энергии воды, обычно называемой водным потенциалом.

Другой источник водного потенциала - давление. Вода перемещается из области более высокого водного потенциала в область более низкого независимо от причины, создающей это различие. Например, вода, находящаяся на вершине водопада, обладает потенциальной энергией. При падении воды, ее потенциальная энергия переходит в кинетическую, которая может быть превращена в механическую и способна совершить работу.


Диффузия - это распространение вещества в результате движения их ионов или молекул, которые стремятся выровнять свою концентрацию в системе.

морфология клетки. структурные компоненты - student2.ru

Признаки диффузии: каждая молекула движется независимо от других; эти движения хаотичны. Диффузия - процесс медленный. Но она может быть ускорена в результате тока плазмы, метаболической активности.
Обычно вещества синтезируются в одном участке клетки, а потребляются в другом. Т. о. устанавливается концентрационный градиент, и вещества могут диффундировать по градиенту из места образования к месту потребления.
Органические молекулы, как правило, полярны. Поэтому они не могут свободно диффундировать через липидный барьер клеточных мембран. Однако двуокись углерода, кислород и другие вещества, растворимые в липидах, проходят через мембраны свободно. В обе стороны проходит вода и некоторые мелкие ионы.

морфология клетки. структурные компоненты - student2.ru

Пропуская воду, клеточные мембраны в то же время не пропускают большинство растворённых в ней веществ. Такие мембраны называют полупроницаемыми, а диффузию через такие мембраны - осмосом.

Эндоцитоз и экзоцитоз

Эндоцитоз и экзоцитоз - это два активных процесса, посредством которых различные материалы транспортируются через мембрану либо в клетки (эндоцитоз), либо из клеток (экзоцитоз). При эндоцитозе плазматическая мембрана образует впячивания или выросты, которые затем, отшнуровываясь, превращаются в пузырьки или вакуоли. Различают два типа эндоцитоза:

1. Фагоцитоз - поглощение твердых частиц. Специализированные клетки, осуществляющие фагоцитоз, называются фагоцитами.


морфология клетки. структурные компоненты - student2.ru
Рис 8.Макрофаг, фагоцитирующий
две красные кровяные клетки

2. Пиноцитоз - поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Часто при этом образуются очень мелкие пузырьки (микропиноцитоз).

Экзоцитоз - процесс, обратный эндоцитозу. Таким способом выводятся гормоны, полисахариды, белки, жировые капли и другие продукты клетки. Они заключаются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Обе мембраны сливаются, и содержимое пузырька выводится в среду, окружающее клетку.

Наши рекомендации