Определение, значение, виды НК
НУКЛЕИНОВЫЕ КИСЛОТЫ- природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.
В природе существуют нуклеиновые кислоты двух типов, различающиеся по составу, строению и функциям. Одна из них содержит углеводный компонент дезоксирибозу и названа дезоксирибонуклеиновой кислотой (ДНК), Другая содержит рибозу и названа рибонуклеиновой кислотой (РНК). Нуклеиновые кислоты - это важнейшие биополимеры, определяющие основные свойства живого.
Строение и функции ДНК
Дезоксирибонуклеиновая кислота- это полимерная молекула, состоящая из тысяч или даже сотен тысяч мономеров - нуклеотидов. Протяженность молекулы ДНК составляет много тысяч нанометров.
Нуклеотид - состоит из остатка азотистого основания, сахара - десоксирибозы и фосфорной кислоты.
Азотистые основания представлены двумя видами: пуриновые основания производные пурина. Из них в состав нуклеиновых кислот входят аденин и гуанин. Пиримидиновые основания, содержащиеся в нуклеиновых кислотах,- цитозин и тимин в ДНК, цитозин и урацил в РНК - это производные пиримидина.
Число пуриновых оснований в ДНК всегда равно числу пиримидиновых, количество аденина равно количеству тимина, а гуанина - количеству цитозина. Такие закономерности получили название правил Чаргаффа.
Нуклеотиды расположены друг от друга на расстоянии 0,34 нм, а на один виток спирали их приходится 10. Диаметр молекулы ДНК составляет около 2 нм.
Сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания - в середине. Причем последние ориентированы таким о6рааом, что между основаниями из противоположных цепей могут образовываться водородные связи. Из построенной модели выявилось, что пурин в одной цепи всегда связан водородными связями с противоположным пиримидином в другой цепи. Такие пары имеют одинаковый размер по всей длине молекулы. Не менее важно то, что аденин может спариваться лишь с тимином, а гуанин только с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином ицитозином – три.
Каждая из пар оснований обладает симметрией, позволяющей ей включиться в двойную спираль в двух ориентациях (А = Т и Т = А; Г=Ц и Ц=Г).Если известна последовательность оснований в одной цепи (например, Т-Ц– Г- Ц-А-Т), то благодаря специфичности спаривания (принцип дополнения, т. е. комплементарности) становится известной и последовательность оснований ее партнера второй цепи (А-Г-Ц-Г-Т-А).
Строение и функции РНК.
Рибонуклеиновая кислота-полимер, мономерами которой являются нуклеотиды. РНК представляет собой однонитевую молекулу. Она построена таким же образом, как и одна из цепей ДНК. Нуклеотиды РНК очень близки, хотя и не тождественны, нуклеотидам ДНК. Их тоже четыре, и они состоят из азотистого основания, пентозы и фосфорной кислоты. Три азотистых основания совершенно такие же, как в ДНК: А, Г и Ц. Однако вместо Т у ДНК в РНК присутствует близкий к нему по строению пиримидин - урацил (У). Различие между ДНК и РНК существует также в характере углевода: в нуклеотидах ДНК углевод - дезоксири-боза, а в РНК - рибоза. Связь между нуклеотидами осуществляется, как и в одной из цепей ДНК, т. е. через углевод и остаток фосфорной кислоты. В отличие от ДНК, содержание которой в клетках определенных организмов относительно постоянно, содержание РНК в них колеблется. Оно заметно повышено в клетках, в которых происходит синтез белка. Все виды РНК синтезируются на ДНК, которая служит своего рода матрицей.
Виды РНК
Транспортная РНК (т-РНК). Молекулы т-РНК самые короткие: они состоят всего из 80-100 нуклеотидов. Транспортная РНК в основном содержится в цитоплазме клетки. Функция ее состоит в переносе аминокислот в рибосомы, к месту синтеза белка. Из общего содержания РНК клетки на долю т-РНК приходится около 10%.
Рибосомная РНК (р-РНК). Это самые крупные молекулы РНК: в их состав входит 3-5 тыс. нуклеотидов. Рибосомные РНК составляют существенную часть рибосомы. Из общего содержания РНК в клетке на долю р-РНК приходится около 90%.
Информационная РНК (и-РНК), или матричная (м-РНК). Содержится в ядре и цитоплазме. Функция ее состоит в переносе информации о структуре белка от ДНК к месту синтеза белка в рибосомах. На долю и-РНК приходится примерно 0,5-1 % от общего содержания РНК клетки.
4. АТФ
Аденозинтрифосфорная кислота - нуклеотид играющи ведущую роль в энергетике клетки. Аденозинмонофосфорная кислота (АМФ) входит в состав всех РНК; при присоединении еще двух молекул фосфорной кислоты (НзРО4) она превращается в АТФ и становится источником энергии, которая запасается в двух последних остатках фосфатов.
Как во всякий нуклеотид, в АТФ входят остаток азотистого основания (аденин), пентоза (рибоза) и остатки фосфорной кислоты (у АТФ их три). Из состава АТФ под действием фермента АТФ-азы отщепляются остатки фосфорной кислоты.
При отщеплении одной молекулы фосфорной кислоты А ТФ переходит в АДФ (аденозиндифосфорная кислота), а если отщепляются две молекулы фосфорной кислоты, АТФ переходит в АМФ (аденозинмонофосфорная кислота). Реакции отщепления каждой молекулы фосфорной кислоты сопровождаются освобождением 419 кДж/моль.
Значение АТФ в жизни клетки велико, она играет центральную роль в клеточных превращениях энергии. Основной синтез АТФ происходит в митохондриях.
СИГНАЛЬНЫЕ ВЕЩЕСТВА
План лекции:
1. Общее понятие о сигнальных веществах
2. Феромоны, виды, значение
3. Ферменты
4. Гормоны
1. Общее понятие о сигнальных веществах
СИГНАЛЬНЫЕ ВЕЩЕСТВА - химические коммуникационные агенты, переносящие информацию между свободно живущими одноклеточными существами; между клетками внутри организма; между многоклеточными организмами. Многие из сигнальных веществ эволюционно-консервативны. Они возникли в эволюции как сигналы, используемые микроорганизмами и далее приобрели новые роли у многоклеточных организмов, включая высших животных и человека.
Феромоны, виды, значение
ФЕРОМОНЫ (греч. Φέρω — «нести» + ορμόνη — «побуждать, вызывать») — продуктЫ внешней секреции, выделяемые некоторыми видами животных и обеспечивающие химическую коммуникацию между особями одного вида. Феромоны — биологические маркеры собственного вида, летучие хемосигналы, управляющие нейроэндокринными поведенческими реакциями, процессами развития, а также многими процессами, связанными с социальным поведением и размножением.
Феромоны модифицируют поведение, физиологическое и эмоциональное состояние или метаболизм других особей того же вида.
Классификация феромонов
По своему воздействию феромоны делятся на два основных типа
1. РЕЛИЗЕРЫ — тип феромонов, побуждающих особь к каким-либо немедленным действиям и используются для привлечения брачных партнёров, сигналов об опасности и побуждения других немедленных действий.
2. ПРАЙМЕРЫ - используются для формирования некоторого определённого поведения и влияния на развитие особей: например, специальный феромон, выделяемый пчелой-маткой. Это вещество подавляет половое развитие других пчёл-самок, таким образом превращая их в рабочих пчёл.
В качестве отдельных названий некоторых типов феромонов можно привести следующие: эпагоны — половые аттрактанты; одмихнионы — метки пути, указывающие дорогу к дому или к найденной добыче, метки на границах индивидуальной территории; торибоны — феромоны страха и тревоги; гонофионы — феромоны, индуцирующие смену пола; гамофионы — феромоны полового созревания; этофионы — феромоны поведения; лихневмоны - феромоны маскирующие животное под другой вид.
Муравьи используют феромоны для обозначения пройденного пути. По специальным меткам, оставляемым по дороге, муравей может найти дорогу обратно в муравейник. Также, метки, делаемые при помощи феромонов показывают муравейнику путь к найденной добыче. Отдельные запахи используются муравьями для подачи сигнала об опасности, что провоцирует у особей либо бегство, либо агрессивность.
Ввиду достаточно сложных поведенческих реакций феромоны позвоночных изучены слабо. Существует предположение, что рецептором феромонов у позвоночных является вомероназальный (якобсонов) орган.
Исследование человеческих феромонов находится пока ещё на зачаточной стадии. Известно, что в поте некоторых мужчин находятся вещества, привлекающие женщин. Также отмечено, что в больши́х женских коллективах менструальный цикл со временем синхронизируется, протекая одновременно у большинства женщин. Эта особенность также приписывается воздействию человеческих феромонов. Поведение высших млекопитающих, в том числе и человека, подчинено многим факторам, и феромоны не играют решающей роли в его регуляции.
Феромоны нашли своё использование в сельском хозяйстве. В сочетании с ловушками разных типов, феромоны, приманивающие насекомых, позволяют уничтожать значительные количества вредителей. На современном рынке парфюмерной продукции присутствуют товары, которые позиционируются как «содержащие феромоны». Прозводители такой продукции утверждают, что ее использование усиливает привлекательность у противоположного пола «на бессознательном уровне».
Ферменты, виды, функции
ФЕРМЕНТЫ или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον — дрожжи, закваска) — обычно белковые молекулы или молекулы РНК или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ). Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы — повышают, ингибиторы — понижают). Белковые ферменты синтезируются на рибосомах, а РНК — в ядре.
Функции ферментов
Ферменты — белки, являющиеся биологическими катализаторами. Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.
Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность. При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз.
Ферменты широко используются в народном хозяйстве — пищевой, текстильной промышленности, в фармакологии.
Классификация ферментов
По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC — Enzyme Comission code). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Первое число грубо описывает механизм реакции, катализируемой ферментом:
КФ 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа
КФ 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
КФ 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза
КФ 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
КФ 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
КФ 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза
Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам. Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте.