Разрушение биологического материала азотной и серной кислотами

5.МЕТОДЫ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ

При отравлении «металлическими ядами» содержание их в различных органах будет колебаться в зависимости от принятого количества, времени, наступления смерти и оказания помощи. Поэтому для каждого элемента рекомендованы два метода количественного анализа (фотоэлектроколориметрическим и объемный) или один метод определения в широком интервале концентраций.

Классификация и характеристика методов количественного определения

1. Весовой метод (применяется при анализе на барий) обладает самой низкой чувствительностью, границы определения Ва в виде BaSО4 составляет 5 мг.

2. Объемные (титриметрические) методы. Из объемных методов чаще всего применяется комплексонометрия: прямое титрование после экстракции с последующей реэкстракцией при анализе экстракционных катионов (медь, висмут, кадмий, цинк), обратное титрование - для осадочных катионов (барий, свинец). Граница определения - 0,5-1,0 мг. При анализе на катион серебра применяют роданометрический метод, на катион свинца - хромато-иодометрический метод, граница определения этих методов составляет 2,0 мг. Окислительно-восстановительная реакция с получением окрашенных растворов при изменении степени окисления марганца от 2 до 7 лежит в основе колориметрического титрования, границы определения 0,02 мг.

3. Фотометрические методы основаны на измерении оптической плотности окрашенных комплексов металлов с органическими реагентами, граница определения металлов в виде дитизонатов составляет 0,02 мг, в виде ДДТК - 0,1

4.

Вопрос № 47. Современные методы анализа металлов

В настоящее время для целей аналитической и токсикологической химии при исследовании на металлы используются как химические, так и физико–химические (инструментальные) методы анализа.

Эти методы дополняют друг друга. К достоинствам химических методов можно отнести простоту исполнения, малую стоимость реактивов и оборудования, наглядность получаемых результатов. Химический метод анализа может быть поставлен даже в слабо оснащённой лаборатории.

Наиболее часто в анализе металлов используются методы атомной спектроскопии. Среди них следует выделить традиционные:

1) атомно–эмисcионную спектроскопию, которой исследуют линейчатые спектры возбуждённых (тем или иным способом) атомов, определяя при-роду и количество отдельных элементов;

2) атомно–абсорбционную спектроскопию, с помощью которой измеряют резонансное поглощение излучения определённой длины волны.

В основе последнего метода лежит закон излучения Кирхгофа, согласно которому элемент поглощает излучение той же длины волны, которое он испускает в возбуждённом состоянии.

В каждом из методов проба переводится в атомарное состояние с помощью различных источников (пламя, дуга, искра, лазер, лампа с полым катодом, печь с графитовыми стержнями).

В атомно–эмиссионной спектроскопии атомы, находясь в возбуждённом состоянии, излучают свет разной длины волны. Для выделения характеристического излучения используют разные оптические приспособления, основанные на явлениях дифракции и интерференции. А также преломления и фокусировки света.

В отличие от этого вида спектроскопии в атомно–абсорбционной спектроскопии атомизированная проба освещается от внешнего источника световым потоком. При прохождении пробы интенсивность светового потока уменьшается, так как атомы определяемого элемента поглощают свет определённой длины волны. Так как измерить изменение интенсивности белого света довольно сложно, используется монохроматор.

вольтамперометрия (полярография) пригодна для определения почти всех неорганических катионов, а её разновидность – инверсионная вольтамперометрия (инверсионная полярография) к тому же очень чувствительна (10–9 – 10–10 моль/л). В основе этого метода лежит концентрирование определяемого вещества на поверхности или в массе электрода с последующей регистрацией анодной вольтамперной кривой. Таким образом, весь процесс состоит из двух стадий:

1) накопление определяемого элемента на электроде (электролиз);

2) получение вольтамперограммы (развёртка потенциала).

Для проведения электролиза широко применяют различные типы рабочих электродов: ртутноплёночные различной формы, так как для повышения чувствительности метода необходимо уменьшить объём ртути; платиновые; золотые; стеклоуглеродные; стеклографитовые и другие.

лектрофорез — это электрокинетическое явление перемещения частиц дисперсной фазы (коллоидных или белковых растворов) в жидкой или газообразной среде под действием внешнего электрического поля.

Источник: zdravnica.net

С помощью электрофореза удаётся покрывать мелкими частицами поверхность, обеспечивая глубокое проникновение в углубления и поры. Различают две разновидности электрофореза: катафорез — когда обрабатываемая поверхность имеет отрицательный электрический заряд (то есть подключена к отрицательному контакту источника тока, являясь катодом) и анафорез — когда заряд поверхности положительный.

Источник: zdravnica.net

Газовая хроматография - это метод, ПФ в которой является инертный газ (азот, гелий, водород). Анализируемую пробу в виде смеси газов или жидкой смеси в паровое состояние вводят в поток ПФ. Неподвижной фазой служит либо твердое вещество (газотвердофазная или газоадсорбционная хроматография - ГАХ), либо жидкость, нанесенная на твердый инертный носитель или на внутреннюю поверхность капилляра (газожидкостная - ГЖХ или газораспределительная хроматография). В аналитической химии чаще используют газораспределительную хроматографию.

ля проведения газовой хроматографии используют газовые хроматографы различных моделей.

Жидкостная хроматография может проводиться в колоночном и плоскостном вариантах. По механизму разделения жидко-твердую хроматографию называют также жидкостной адсорбционной, а жидкость-жидкостную - просто распределительной.

В колоночной жидкостной адсорбционной хроматографии в качестве НФ применяют поверхностно-пористые адсорбенты

Плоскостным вариантом жидкостной адсорбционной хроматографии является тонкослойная хроматография (ТСХ), а жидкость-жидкостной - бумажная (БХ).

В основе ионообменной хроматографии лежит обратимый стехиометрический обмен ионов анализируемого раствора на подвижные ионы сорбентов, называемых ионитами или ионнообменниками. Причиной разделения является различная способность ионов анализируемого раствора к обмену.

В качестве ионитов используют природные или синтетические, твердые, нерастворимые в воде неорганические и органические высокомолекулярные кислоты, основания и их соли, содержащие в своем составе активные (ионогенные) группы. Иониты делятся на катиониты и аниониты.

Катиониты - сорбенты, способные к обмену катионами. катиониты содержат в своем составе ионогенные группы различной степени кислотности, например сульфогруппу - SO3H, карбоксильную группу - COOH, ион водорода которых способен к катионному обмену.

Ионообменную хроматографию применяют в следующих случаях:

1) для разделения компонентов анализируемой смеси, отделения катионов и анионов, разделения катионов, разделения анионов и т.д. Например, при добавлении к смеси ионов Cu2+, Zn2+, Cd2+, Pb2+, Bi3+ соляной кислоты образуются хлоридные комплексы [CuCl4] 2-, [ZnCl4] 2-, [CdCl4] 2-, [PbCl3] -, [BiCl4] - , стойкость которых растет от Cu к Bi. При пропускании через анионитную колонку комплексы поглощаются. Далее последовательно вымывают металлы разбавленной HCl, H2O и HNO3: 2-молярным раствором HCl вымывают Cu, 0.6 М HCl - Zn, 0.3М HCl - Cd, H2O - Pb, HNO3 - Bi;

2) для получения аналитических концентратов. при пропускании больших объемов разбавленных растворов через слой ионита и последующем извлечении поглощенного вещества малым объемом растворителя возможно повышение концентрации вещества в 200-500 раз;

3) для обнаружения ионов. Разработаны методы выделения и обнаружения всех наиболее важных ионов.

Гельхроматография - это совершенно своеобразный вид хроматографии, основанный на использовании различия в размерах молекул разделяемых веществ.

Вопрос № 39.ХТА летучих ядов

Наши рекомендации