Характеристики процесса репликации
Ауторепродукция Общие представления Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа: инициация репликации, элонгация , терминация репликации Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В генометаких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон — это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий, как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды, которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл, так и тысяч копий .Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка — место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок — участок хромосомы, где ДНК уже реплицирована, окруженный более протяженными участками нереплицированной ДНК. В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза. Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500—5000 — у эукариот[3].
Молекулярный механизм репликации
Ферменты (хеликаза, топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципусуперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный. Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.
Характеристики процесса репликации
§ матричный — последовательность синтезируемой цепи ДНК однозначно определяется последовательностью материнской цепи в соответствии с принципом комплементарности;
§ полуконсервативный — одна цепь молекулы ДНК, образовавшейся в результате репликации, является вновь синтезированной, а вторая — материнской;
§ идёт в направлении от 5’-конца новой молекулы к 3’-концу;
§ полунепрерывный — одна из цепей ДНК синтезируется непрерывно, а вторая — в виде набора отдельных коротких фрагментов (фрагментов Оказаки);
§ начинается с определённых участков ДНК, которые называются сайтами инициации репликации
8. Несмотря на индивидуальность набора регуляторных элементов у структурных генов эукариот, каждый из них имеет промоторный участок (ТАТА-бокс или бокс Хогнесса) из восьми нуклеотидов, включающий последовательность ТАТА; последовательность ЦЦААТ (ЦАТ-бокс); участок из повторяющихся динуклеотидов ГЦ (ГЦ-бокс). Эти элементы находятся на расстоянии 25, 75 и 90 п.н. от сайта инициации соответственно (прозрачка 21). Транскрипция структурного гена эукариот начинается со связывания с ТАТА-боксом фактора транскрипции IID (TFIID), который представляет собой комплекс из примерно 14 белков. Затем с TFIID и участками ДНК примыкающими к ТАТА-боксу связываются другие факторы транскрипции и, наконец, со всем этим транскрипционным комплексом связывается РНК-полимераза II. Затем при участии дополнительных факторов происходит инициация транскрипции в точке +1 (прозрачка 19). Ясно, что если последовательности ТАТА отсутствует, или сушественно изменена, то транскрипция структурного гена становится невозможной. на расстоянии сотен и даже тысяч пар оснований от сайта инициации находится так называемая энхансерная последовательность, которая многократно повышает скорость транскрипции структурных генов. По-видимому, сближение удаленных регуляторных элементов и соответствующего структурного гена происходит при укладке хромосомной ДНК. Кроме того, факторы транскрипции, которые связываются с определенными энхансерами и регуляторными элементами, могут образовывать цепочку, соединяющую удаленные друг от друга сайты.
9.Секвенирование ДНК по Сэнгеру: метод "терминаторов".В 1977 г. автор "плюс-минус" метода предложил еще один способ ферментативного секвенирования, получивший название метода терминирующих аналогов трифосфатов. Более мощный и более технологичный, этот способ, несколько модифицированный, применяется до сих пор. В основе метода тоже лежало ферментативное копирование с помощью фрагмента Кленова ДНК полимеразы I из E.coli. В качестве праймеров использовали синтетические олигонуклеотиды. Специфическую терминацию синтеза обеспечивали добавлением в реакционную смесь помимо четырех типов dNTP (один из которых был радиоактивно мечен по альфа положению фосфата) еще и одного из 2',3'-дидезоксинуклеозидтрифосфатов (ddATP, ddTTP, ddCTP или ddGTP), который способен включаться в растущую цепь ДНК, но не способен обеспечивать дальнейшее копирование из-за отсутствия 3'-ОН группы. Отношение концентраций dNTP/ddNTP авторы подбирали экспериментально, так, чтобы в итоге получить набор копий ДНК различной длины. Таким образом, для определения первичной структуры исследуемого фрагмента ДНК требовалось провести четыре реакции копирования: по одному типу терминаторов в каждой из реакций. После этого полученные продукты разгонялись в полиакриламидном геле на соседних дорожках и по расположению полос определялась последовательность нуклеотидов.
Секвенирование ДНК по Максаму и Гилберту: метод химической деградации .В 1976 г. А. Максамом и У. Гилбертом был разработан метод секвенирования, основанный на специфической химической деградации фрагмента ДНК, радиоактивно меченного с одного конца. Препарат меченной ДНК разделяли на четыре аликвоты и каждую обрабатывали реагентом, модифицирующим одно или два из четырех оснований. А. Максам и У. Гилберт предложили модифицировать пуриновые основания диметилсульфатом. При этом происходит метилирование адениновых остатков по азоту в положении 3, а гуаниновых - по азоту в положении 7. Обработка образца ДНК соляной кислотой при 0°С приводит к выщеплению метиладенина. Последующая инкубация при температуре 90°С в щелочной среде вызывает разрыв сахарно-фосфатной цепи ДНК в местах выщепления оснований. Обработка пиперидином приводит к гидролизу образца по остаткам метилгуанина. Пиримидиновые основания модифицируют гидразином. Если реакцию вести в бессолевой среде, то модифицируются как цитозин, так и тимидин; если обработку вести в присутствии 2М NaCl, то модифицируется лишь цитозин. Расщепление цепи ДНК на фрагменты и в этом случае осуществляется пиперидином. Условия реакций авторы подбирали таким образом, чтобы в итоге получить полный набор субфрагментов разной длины. Последующий электрофорез в полиакриламидном геле позволяет восстановить полную структуру исследуемого фрагмента.
Автоматическое секвенирование ДНК 10-12 .см.конспект Упаковка ДНК в ядре
В средней эукариотической клетке общая протяженность геномной ДНК составляет около 2 м, диаметр ее ядра всего ~10-20 мкм. При этом совокупность генов, работающих в данной клетке, должна быть доступна для РНК-полимераз и транскрипционных факторов, а вся ДНК в делящихся клетках должна реплицироваться.Сегодня известно, что упаковка ДНК в ядре эукариотической клетки осуществляется в несколько этапов. Сначала нить ДНК укладывается в нуклеосомы, при этом ее длина уменьшается в шесть-семь раз. Затем нуклеосомная нить складывается в так называемую 30 нм фибриллу (соленоид или зигзагообразную нить), что обеспечивает дополнительную компактизацию в 40 раз. Далее фибрилла организуется в большие (50 и более тысяч пар нуклеотидов) петли, концы которых закрепляются на белковом скелете ядра (его часто называют ядерным матриксом). На этом этапе линейные размеры ДНК сокращаются в 700 раз . Существуют и следующие уровни компактизации ДНК, информация о которых в настоящее время весьма скудна и противоречива.Пока речь шла лишь об упаковке одной протяженной молекулы ДНК. В первом приближении таковой можно считать ДНК одной хромосомы. Однако геном эукариотической клетки разделен на несколько хромосом. Например, в клетках любимого объекта генетиков - плодовой мушки дрозофилы - имеется четыре пары хромосом (в клетках человека их 46). Индивидуальные хромосомы можно увидеть под микроскопом только во время митоза. На остальных фазах клеточного цикла они не видны, и ядро клетки представляется относительно гомогенным. В течение многих лет молекулярных биологов интересовал вопрос, занимают ли отдельные хромосомы ограниченные пространства внутри ядра или же при декомпактизации хромосом ДНК каждой из них распределяется по всему ядру, неизбежно перемешиваясь с ДНК других хромосом.Около 10 лет назад ответ на этот вопрос был найден. Методы молекулярной гибридизации позволили окрашивать в интерфазном ядре индивидуальные хромосомы. Оказалось, что они, вопреки общепринятой в то время точке зрения, занимают внутри ядра ограниченные неперекрывающиеся пространства (названные "хромосомными территориями", рис.3) и располагаются неслучайным образом: хромосомы, богатые генами, локализуются ближе к центру ядра, а бедные генами - ближе к его периферии . В поддержании специфических позиций хромосомных территорий важную роль играет ядерный матрикс.