Кислотоустойчивые бактерии окрашиваются в красный цвет, некислотоустойчивые – в синий. 4 страница

В определенных условиях некоторые представители рода Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, P. chlororaphis и др.) синтезируют водорастворимые флуоресцирующие желто-зеленые пигменты, названные пиовердинами. Пиовердины являются железохелатами (сидерофорами) и выполняют специфическую роль в транспорте Fe3+. Третья группа пигментов, продуцируемых бактериями рода Pseudomonas, – каротиноидные пигменты меланины. Эти пигменты не растворимы в воде и остаются связанными с клетками, придавая колониям желтый или оранжевый цвет. Каротиноидные пигменты продуцируют представители видов P. mendocina, P. radiora, P. Aeruginosa.

Большинство бактерий рода Pseudomonas синтезируют вещества антибиотической природы.

1. Антибиотики ациклического строения: • псевдомоновая кислота (мупироцин) – действует на грамположи- тельные и грамотрицательные бактерии, дрожжи. Обладает гемолитическими свойствами. Продуцент – P. Fluorescens.2. Антибиотики циклического строения: • салициловая кислота. Продуценты – P. fluorescens, P. aeruginosa, P. Denitrificans.3. Антибиотики гетероциклического строения: • феназиновые антибиотики – действуют на грамположительные и грамотрицательные бактерии. Продуценты – P. сhlororaphis, P. aureofaciens. 4. Антибиотики-производные пиррола: • пирролнитрин – активен против большинства плесневых грибов и дрожжей. 5. Антибиотики-аминогликозиды. 6. Антибиотики-пептиды. 7. Лактамные антибиотики.

Широкая распространенность псевдомонад обеспечивается их способностью развиваться в самых разных условиях в природе, используя различные соединения углерода и азота в энергетическом и конструктивном обмене.

Среди псевдомонад много сапрофитов (P. fluorescens, P. putida и др.), но есть виды, патогенные для человека и животных (P. aeruginosa) и для растений (P. syringae, P. cichorii, P. glуcinea и др.).

  1. Стерилизация.

Цель процесса стерилизации состоит в полном удалении или уничтожении всех живых микроорганизмов и спор внутри или на поверхности предмета.

К методам термической стерилизации относят: прокаливание и обжигание в пламени спиртовки; кипячение; сухожаровую (горячим паром) стерилизацию; стерилизацию насыщенным паром под давлением (автоклавирование); дробную стерилизацию (тиндализацию), пастеризацию.

Прокаливание и обжигание в пламени– наиболее быстрые и доступные методы стерилизации. Однако их использование ограничивается только термоустойчивыми материалами.

Кипячение– простейший способ стерилизации. Кипячением в дистиллированной воде стерилизуют мембранные фильтры.

Дробная стерилизация (тиндализация или стерилизация текучим паром)используется для стерилизации питательных сред и растворов, которые портятся при использовании температур выше

100 °С. Метод разработан в 1877 году Дж.Тиндалем и согласно этомуметоду, жидкость доводят до 100 °С и продолжают выдерживать при этой температуре 10 мин. За это время все вегетативные клетки погибают, жизнеспособными остаются только споры. Затем жидкость охлаждают до температуры, оптимальной для прорастания спор (30 °С) и через несколько часов снова пропускают пар.

Пастеризациязаключается в однократном прогреве материала притемпературах ниже 100 °С и направлена на уничтожение вегетативных клеток.

Сухожаровая стерилизация или стерилизация сухим горячим воздухомпроводится в сушильных шкафах.

Стерилизация насыщенным паром под давлением или автоклавирование –один из наиболее эффективных методов стерилизации, так как стерилизуемый объект подвергается одновременному воздействию как высокой температуры, так и повышенному давлению пара.

При холодной стерилизации используют химические вещества или проводят воздействие на объект факторами физической природы. Химические методы подавления жизнедеятельности микроорганизмов

предполагают использование дезинфектантов и антисептиков, имею-щих неспецифический эффект, либо использование антибиотиков и синтетических антимикробных препаратов с избирательным противомикробным„действием. Дезинфицирующие вещества классифицируются по группам: кислоты или щелочи, галогены, тяжелые металлы,четвертичные аммониевые основания, фенольные соединения, альдегиды, кетоны, спирты, амины и перекиси. Например, спирты используются в концентрации

60 – 70 % и эффективны в отношении вегетативных клеток.

Стерилизация фильтрованиемиспользуется для веществ, которые не выдерживают термической обработки (растворов белков, углеводов, витаминов, углеводородов, антибиотиков, сыворотки). Способ

заключается в пропускании жидкостей и газов через специальныемелкопористые фильтры (бактериальные), диаметр пор которых непревышает 0,45 – 0,2 мкм.

Существуют два основных типа фильтров – глубинные и мембранные. Глубинные состоятиз волокнистых или гранулированных материалов, которые спрессованы, свиты или связаны в лабиринт проточных каналов. Мембранные фильтры имеют непрерывную структуру и захват ими частиц определяется размером пор. Различают фильтры: мембранные, получаемые на основе нитроцеллюлозы; асбестовые или фильтры Зейтца, получаемые на основе смеси асбеста и целлюлозы; фарфоровые или свечи Шамберлана, получаемые из смеси кварцевого песка и коалина, сплавленных между собой; стеклянные, полученные из стекла «Пирекс».

Стерилизация с использованием облученияпригодна для термолабильных материалов. Ультрафиолетовые лучи (250 – 270 нм) используются для стерилизации центрифужных пробирок, наконечников для пипеток, материалов из термолабильной пластмассы.

Рентгеновское и γ-облучение также эффективно для стерилизации пластмасс, пищевых продуктов, но требует строгого соблюдения правил безопасности. На практике проводят и контроль стерилизации, при котором о работе стерилизующих агентов и аппаратов судят по: 1) эффективностигибели спор в процессе стерилизации; 2) прямым измерением температуры и 3) с помощью химических индикаторов.

Билет 9.

  1. Распространение в природе. Использование человеком.

Повсеместное распространение, быстрое размножение и особенности метаболизма микроорганизмов накладывают отпечаток на жизнь всей планеты.

Особую роль в формировании и поддержании плодородия почвы играют бактерии, участвующие в круговороте азота в природе. Это азотфиксирующие бактерии, которые превращают недоступный для растений молекулярный азот атмосферного воздуха в связанный, обогащая тем самым почву соединениями азота. Немаловажным этапом круговорота азота в природе является возвращение минерального азота в атмосферу, которое осуществляют денитрифицирующие бактерии в процессе

нитратного (анаэробного) дыхания. Если бы этот цикл не был замкнут, то окисленные формы азота вымывались бы из почвы в моря и океаны, оставаясь в них недоступными для растений. Кроме того, образующиеся в процессе денитрификации оксиды азота участвуют в поддержании озонового слоя.

Микроорганизмы-редуценты – «санитары» природы. Они осуществляют разложение растительных и животных остатков и превращают их в минеральные вещества.

Микроорганизмы принимают активное участие в биологическом самоочищении водоемов, выполняя функцию по обезвреживанию и переработке поступающих в водоем загрязняющих веществ.

Широко используются микроорганизмы и в системах биологической очистки сточных вод. Создаются специальные сооружения аэробной биологической очистки – биотенки, биофильтры и аэротенки.

Достижения микробиологии находят практическое применение в металлургии для извлечения различных металлов из руд. Например, уже реализован способ микробиологического выщелачивания меди из сульфидной руды халькопирита. Особо следует отметить, что микробиология внедрилась в такие традиционно небиологические производства, как получение энергетического сырья (биогаз метан), добыча нефти, что вносит существенный вклад в решение топливно-энергетической проблемы.

Установлено, что при добавлении на тонну бетона нескольких килограммов биомассы микроорганизмов повышается прочность и пластичность строительного материала.

Изучение свойств патогенных микроорганизмов позволило получать в промышленных масштабах вакцины, сыворотки и другие лечебные препараты.

  1. Генетическая инженерия. Клонирование.

Генетическая инженерия – совокупность методов, позволяющих создавать in vitro рекомбинантные молекулы ДНК, с последующим введением этих новых генетических структур в живую клетку.

Так как с химической точки зрения ДНК всех организмов однотипна, то in vitro возможно воссоединение фрагментов ДНК из любых организмов.

Для того чтобы осуществить генно-инженерный эксперимент, создать рекомбинантную ДНК и ввести ее в клетку другого организма, необходимо соблюсти следующие условия:

• иметь инструменты для разрезания молекул ДНК на фрагменты;

• иметь инструменты для соединения фрагментов ДНК, выделенных из различных источников;

• подобрать переносчик, или вектор генов, предназначенных к введению в клетку другого организма. Этот вектор должен самостоятельно реплицироваться в клетке и обеспечивать репликацию введенного фрагмента ДНК;

• разработать способ введения гибридных или рекомбинантных молекул ДНК в живую клетку;

• определить метод отбора (селекции) клона реципиентной клетки, воспринявшей гибридную ДНК.

Самыми удобными векторами являются плазмиды, так как они, во-первых, способны реплицироваться независимо от хромосомной ДНК бактерий. Во-вторых, плазмиды содержат гены, благодаря которым по фенотипу можно отделить бактерии, содержащие плазмиды, от бактерий, лишенных плазмид. Например, R-плазмиды содержат структурные гены, ответственные за устойчивость к антибиотикам. При высеве бактерий, содержащих такие R-плазмиды, на среду с антибиотиком они будут расти и формировать колонии, бактерии, лишенные их, на среде с антибиотиком не вырастут.

Резать молекулы ДНК на фрагменты можно с помощью ферментов рестриктаз. Необходимо подобрать специфическую рестриктазу, которая имела бы сайты узнавания на двух молекулах ДНК (плазмиде и ДНК, из которой вырезаются переносимые гены) и резала бы их с образованием липких концов. Рестриктаза не должна резать ДНК плазмиды в области, ответственной за репликацию, и в области структурных генов, детерминирующих фенотип плазмиды.

Соединять или сшивать фрагменты ДНК можно с помощью ферментов полинуклеотидлигаз.

Вводить рекомбинантные молекулы ДНК можно с помощью трансформации. Рекомбинантной ДНК обрабатывают реципиентные клетки (клетки, в которые клонируется нужный ген) и через определенный промежуток времени выдерживания при оптимальной температуре смесь высевают на селективную среду, позволяющую отобрать по фенотипу клоны, воспринявшие плазмиду.

Метод клонирования нашел широкое применение. С его помощью можно получать микробиологическим путем продукты, использующиеся человеком. В настоящее время разработаны методы микробиологического получения гормона инсулина, в котором нуждаются больные диабе-

том. Разработаны методы получения интерферонов – белков, обладающих антивирусным действием;

соматостатина – гормона роста и др. Гены, детерминирующие синтез этих веществ, клонированы в основном в клетках E. coli.


  1. Определение ферментативной активности.

Выявление каталазыпроводят на предметном стекле в капле 5 % перекиси водорода. При наличии каталазы происходит разложение перекиси водорода с выделением пузырьков кислорода.

Выявление оксидазытакже проводят на предметном стекле. Вносят в каплю 1 % р-ра дигидрохлорида тетраметил-n-фенилендиамина. При положит. реакции в течен. мин развивается розово-красная окр-ка.

Выявление дегидрогеназ: в пробирку вносят 1 мл суспензии бактерий, добавляют 0,5 мл 3 % раствора 2,3,5-трифенилтетразолиум хлорида (ТТХ). Смесь помещают в термостат на 30 мин. Если дегидрогеназы восстанавливают ТТХ до формазана, то развив-ся красное окра-ие трифенилформазана.

Утилизация микроорганизмами источников углеродаКультуры высевают на среды, содержащие в качестве единственного источника углерода различные моно-, ди- и полисахариды, многоатомные спирты, органические кислоты, углеводороды: глюкозу, фруктозу, арабинозу, ксилозу, рамнозу, маннозу, лактозу, мальтозу, сахарозу, трегалозу, глицерин, маннит. Среды Гисса: • Основной фон (в %, пептон – 0,5; К2НРО4 – 0,1); • Индикатор (бромтимоловый синий, бромкрезоловый пурпурный, феноловый красный);• Исследуемый углевод или спирт (1 %).

Рост микроорганизмов может приводить к накоплению органических кислот, нейтральных продуктов и газов. Образование кислот регистрируется по изменению рН среды, о чем свидетельствует изменение окраски индикатора. Образование газа определяют по появлению пены, разрывов и пузырьков.

Определение способности использовать углеводы на агаризованных синтетич. средах.На пов-сть агаризованной среды с углеводом или спиртом с помощью петли засевают штрихом испытуемые микроорганизмы. Чашки инкубируют приоптимальной для роста температуре. Результаты учитывают по наличию роста культур в сравнении с ростом на контрольной чашке, несодержащей испытуемых соединений.

Определение продукции гидролитических ферментовМикроорганизмы способны использовать в качестве питательных субстратов различные высокомолекулярные соединения: полисахариды, белки, нуклеиновые кислоты, липиды. Макромолекулы не могут проникать через цитоплазматическую мембрану. Первоначально под действием гидролитических ферментов, которые выделяются микроорганизмами, они переходят в низкомолекулярные продукты, которые с помощью специализированных транспортных систем поступают в бактериальные клетки. Микроорганизмы выращивают в питательной среде, которая содержит макромолекулярное соединение. Если клетки образуют экзоферменты, то вокруг колоний, образуется зона продуктов гидролиза.

Определение протеолитической активности заключается ввыявлении протеаз, которые катализируют расщепление белков на поли и олигопептиды. Активность последних определяют, используя в качестве субстратов, желатину, казеин и другие белки.

Разжижение желатины.Разжижение желатины регистрируют визуально, при этом отмечают интенсивность и характер разжижения, которое может быть послойным, мешковидным, пузыристым.

О наличии протеолитических ферментов может свидетельствовать и гидролиз казеина.В этом случае обезжиренное (0,3 – 0,5 %) молоко смешивают с питат. средой и определяют образование сгустков. Определение амилолитической активностизаключается в посеве на поверхность полноценной питательной среды, которая содержит 0,2 % растворимого крахмала. Через 3 – 5 суток инкубирования на поверхность среды в чашках Петри наносят раствор Люголя. При отрицат. реакции поверхность остается синей. Если бактерии гидролизуют крахмал, то питательная среда не окрашивается.

Наши рекомендации