Эволюция солнца

облако межзвездной материи достигло критической массы и начался процесс гравитационной конденсации. Пылевые частицы и газовые молекулы падают к центру облака, потенциальная энергия гравитации переходит в кинетическую, а кинетическая энергия в результате столкновений — в тепло. Облако нагревается и вследствие увеличения температуры возрастает его излучение. Оно превращается в протозвезду (звезда в начальной стадии развития). По мере сжатия протозвезды температура ее увеличивается, Когда температура в недрах звезды достигает нескольких миллионов градусов, начинаются термоядерные реакции. Сначала «выгорает» дейтерий, а затем литий, бериллий и бор. Сжатие в результате выделения дополнительной энергии замедляется, но не прекращается совсем, так как эти элементы быстро оказываются израсходованными. Когда температура повышается еще больше, начинают действовать протон-протонные реакции (для звезд с массой, меньшей 1,5 M) или углеродно-азотный цикл (для звезд с большей массой). Эти реакции могут поддерживаться длительное время, сжатие прекращается и протозвезда превращается в обычную звезду главной последовательности. Протозвезды, имеющие такую же массу, как Солнце, сжимаются за 108 лет. В результате термоядерных реакций, протекающих в недрах звезды, происходит «выгорание» водорода. Время пребывания на главной последовательности зависит от скорости термоядерных реакций, а скорость реакций—от температуры. Чем больше масса звезды, тем выше должна быть температура в ее недрах, чтобы газовое давление могло уравновесить вес вышележащих слоев. Поэтому ядерные реакции в более массивных звездах идут быстрее и время пребывания на главной последовательности для них меньше, так как быстрее расходуется энергия Ядерные реакции идут только в центральной части звезды. В этой области (конвективное ядро звезды) вещество все время перемешивается. При выгорании водорода радиус и масса конвективного ядра уменьшаются. Когда весь водород в ядре звезды превратится в гелий, вторая стадия эволюции (стадия главной последовательности) заканчивается. Реакции превращения водорода в гелий продолжают идти только на внешней границе ядра. Расчеты показывают, что при этом ядро сжимается, плотность и температура в центральной части звезды возрастают, увеличивается светимость и радиус звезды. Звезда сходит с главной последовательности и становится красным гигантом, вступая в третью стадию эволюции.Предполагается, что в стадии красного гиганта (или сверхгиганта) в плотном ядре звезды в течение некоторого времени может идти реакция превращения гелия в углерод. Для этого температура в центральных частях звезды должна достигать 1.5 108 °K. Когда гелиевая реакция внутри ядра и водородные реакции на его границе исчерпывают себя, третья стадия эволюции (стадия красного гиганта) приходит к концу. Протяженная оболочка гиганта при этом расширяется, ее наружные слои не могут удерживаться силой тяготения и начинают отделяться. Звезда теряет вещество, и масса ее уменьшается. Наблюдения показывают, что у красных гигантов и сверхгигантов действительно иногда имеет место истечение вещества из атмосферы. Когда протяженная оболочка гиганта рассеется, остается только ее центральное ядро, полностью лишенное водорода. В случае звезд с массой, не превосходящей солнечную в 2-3 раза, вещество ядра находится в вырожденном состоянии, так же как и вещество белых карликов. белые карлики и являются четвертым и последним этапом эволюции таких звезд, следующим за стадией красного гиганта. В белых карликах ядерные реакции не идут. Белые карлики светят за счет запаса тепловой энергии, накопленной в прошлом, и постепенно остывают, превращаясь в ненаблюдаемых «черных» карликов. Белые карлики — это остывающие, умирающие звезды..

56 Спектры нормальных звёзд и спектральная классификация. Температура звёзд. Температурная шкала. Современная спектральная классификация звёзд, разработанная в Гарвардской обсерватории в 1890—1924 гг. является температурной классификацией, основанной на виде и относительной интенсивности линий поглощения и испускания спектров звёзд. Диапазону эффективных температур звезд от 60000 до 2000 К соответствует последовательность спектральных классов, Обозначаемых буквами

-C(R-N)

/

O-B-A-F-G-K-M

\

-S

Промежуток между соседними классами делится на 10 подклассов - от 0 до 9 - с ростом в сторону уменьшения температуры.

Класс О (температура " 30 000—60 000 К) К этому классу принадлежат немногочисленные весьма горячие звёзды с сильно развитым ультрафиолетовым участком спектра. Характерны линии ионизованного гелия. В более поздних подразделениях видны линии нейтрального гелия, многократно ионизованных азота, углерода, кремния. Встречаются звёзды с широкими эмиссионными полосами. Цвет звезды - голубые.

Класс В (t " 10 000—30 000 К). Для этого класса характерно наличие в них линий нейтрального гелия и ионизованных кислорода и азота. Линии водорода хорошо заметны, и усиливаются при переходе к классу В9. линии гелия к классу В9 ослабляются. Со спектров В5, хорошо заметны линии ионизованного кальция и магния. Цвет звезды - бело-голубые.

Класс А (t " 7500—10 000 K). В спектрах преобладают водородные линии бальмеровской серии, достигающие наибольшей интенсивности в классе А0, линии гелия исчезают. Нарастают интенсивности линии К и линии l 4481 , в классе А2 появляется линия нейтрального кальция l 4227 , а в классе А5 - линии нейтрального железа. Цвет звезды белые.

Класс F (t " 6000—7500 К). Водородные линии всё ещё наиболее интенсивны, но заметны также многочисленные линии металло. Очень интенсивны линии Н и К ионизованного кальция. Несколько линий железа и ионизованного титана на спектрограммах с малой дисперсией сливаются. Цвет звезды - желтовато-белые.

Класс G (t " 5000—6000 K). Водородные линии более не выделяются среди мощных спектральных линий металлов и в спектрах G5 - G9 слабее некоторых линий железа. Очень интенсивны линии Н и К. К классу G2 принадлежит Солнце. Цвет звезды - жёлтые.

Класс К (t " 3500—5000 К). Линии Н и К, линия l 4227 ?и полоса G достигают наибольшего развития. В классе К5 появляются следы полос поглощения молекулы окиси титана. Непрерывный спектр в ближайшем ультрафиолетовом участке практически отсутствует. Цвет звезды - оранжевые.

Класс М (t " 2000—3500 К). К этому классу принадлежат красные звёзды с полосчатым спектром. Особенно выделяются полосы окиси титана. Из атомных линий выделяется только линия l 4227 . Линии Н и К почти не видны. Цвет звезды - красные

Дополнительные классы Класс W (t "60000-100000 К). Звёзды Вольфа-Райе, очень тяжёлые яркие звёзды с температурой порядка 70000 K и интенсивными эмиссионными линиями в спектрах. Излучение в линиях He II, He I, N I, N III-V, O III-VI, C II-IV Класс С (=R-N) (t "2000-350К). Углеродные звёзды, гиганты с повышенным содержанием углерода. Молекулярные полосы поглощения C2 и его соединений CH, CO, CN. У звезд R0–R3 имеются относительно слабые полосы C2 и CN, тогда как в типах R5–R8 эти полосы сильны, а также имеется континуум, простирающийся как минимум до 3900 A. У N-звезд полосы C2 и CN также сильны, но континуум обрывается до 4000 A... В 1993 году Keenan провел ревизию MK-классификации и разделил углеродные звезды на три последовательности: C-R, C-N и C-H с подклассами до C-R6, C-N9 и C-H6, определяемыми по температуре. Новые последовательности моделировали старую R-N систему с отдельной категорией для CH-звезд, которые ранее классифицировались как R-пекулярные. Класс S (t "2000-3500К). Циркониевые звёзды. Полосы поглощения ZrO. Спектральный класс L (t " 1500-2000К). Сильные полосы CrH, рубидия, цезия. Спектральный класс T (t " 1000-1500 К). Интенсивные полосы поглощения воды, метана, молекулярного водорода. Для планетарных туманностей введен специальный спектральный класс P, а для новых звезд - класс Q.

57.Абсолютная звёздная величина и светимость звёзд.

Абсолютная звёздная величина (M) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7.

Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле: эволюция солнца - student2.ru

где d0 = 10 пк ≈ 32,616 световых лет

Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле эволюция солнца - student2.ru

Абсолютная звёздная величина связана со светимостью следующим соотношением: эволюция солнца - student2.ru

где эволюция солнца - student2.ru и эволюция солнца - student2.ru — светимость и абсолютная звёздная величина Солнца. Обычно эволюция солнца - student2.ru = 1

Наши рекомендации