Расчет доз облучения при проведении работ в чрезвычайных ситуациях

Доза облучения определяется по формуле

Расчет доз облучения при проведении работ в чрезвычайных ситуациях - student2.ru (рентген)

где:

Рср – средний уровень радиации (рентген/час) показывает дозу облучения, которую может получить человек в единицу времени. Снижается пропорционально времени, прошедшего после взрыва.

t – время нахождения на зараженном участке (час)

K – коэффициент ослабления дозы радиации. При нахождении в автомобиле k=2, при нахождении в БТРе k=4.

Тема 29. Чрезвычайные ситуации военного времени.

План

1. Ядерное оружие и его поражающие факторы.

2. Химическое оружие, виды отравляющих веществ, критерии боевой эффективности.

3. Бактериологическое (биологическое) оружие.

4. Содержание и организация мероприятий по локализации и ликвидации последствий чрезвычайных ситуаций.

Ядерное оружие и его поражающие факторы

К оружию массового поражения (ОМП) обычно относят: ядерное, химическое и биологическое оружие. Однако в процессе совершенствования и обычные виды оружия могут приобретать отдельные черты ОМП. Массовым поражением может обладать оружие, создающееся на новых принципах воздействия — инфразвуковое, лучевое, радиологическое и др.

Ядерное оружие. К наиболее мощным средствам ОМП относится ядерное оружие, которое состоит из ядерных боеприпасов (авиационные бомбы, артиллерийские снаряды, боевые части ракет, морских торпед, глубинные бомбы и мины) и средств доставки (носителей) и средств управления. При ядерном взрыве выделяется огромное количество энергии, образующейся при цепной реакции деления тяжелых ядер некоторых изотопов урана и плутония или термоядерной реакции синтеза легких ядер изотопов водорода (дейтерия, трития). Мощность ядерного боеприпаса (мощность ядерного взрыва) принято характеризовать тротиловым эквивалентом. Тротиловый эквивалент — это масса тротила (тротил — вещество с теплотой взрыва 4240. кДж/кг), при взрыве которой выделяется столько же энергии, что и при взрыве ядерного боеприпаса.

При любом ядерном взрыве можно выделить четыре основных поражающих фактора: механическое воздействие воздушной ударной волны (ВУВ), механическое воздействие сейсмических волн в грунте или водной среде, радиационное воздействие проникающей радиации и радиоактивного заражения, тепловое воздействие светового излучения. Для некоторых элементов объектов поражающим фактором может являться электромагнитное излучение (импульс) ядерного взрыва.

Механизмы воздействия ВУВ на объекты при ядерном взрыве и при взрывах обычных ВВ практически одинаковы. Однако образующиеся при ядерном взрыве воронки и волны сжатия в грунте имеют значительно большие размеры и масштабы по сравнению с взрывами обычных ВВ.

Вокруг эпицентра взрыва условно можно выделить три характерных зоны. В первой зоне наблюдается разрушение практически всех сооружений, это зона воронки ядерного взрыва, радиус которой изменяется от 175 до 1340 м при изменении мощности взрыва от 0,1 до 10 Мт. Вторая зона характеризуется наличием пластических деформаций грунта, а ее радиус может составлять до 2,5 радиуса самой воронки. В этой области наиболее опасным для заглубленных сооружений является действие прямых ударных волн и волн сжатия (сейсмовзрывных волн).

Третья зона располагается за пределами зоны пластической деформации и характеризуется наиболее существенным влиянием волн сжатия, инициируемых воздушной ударной волной. Данные о размерах зон, образующихся при ядерных взрывах, представлены в таблице 4

Таблица 4

Радиусы зон

Тротиловый эквивалент ядерного взрыва, кт Радиус зоны, км
I II
1,2 1,65 2,4 3,0 3,4 1,8 2,25 3,2 3,8 4,5

Источниками проникающей радиации являются ядерная реакция и радиоактивный распад продуктов ядерного взрыва. Возникающее при ядерных взрывах излучение подразделяется на начальное и остаточное. Начальное излучение состоит из гамма-лучей, потока нейтронов, а также альфа - и бета-частиц. Длительность начального излучения не велика и составляет не более 10...15 с. Альфа - и бета-частицы обладают малой проникающей способностью и не оказывают существенного воздействия на биологические объекты, в то время как потоки нейтронного и гамма-излучения обладают большой проникающей способностью и оказывают на биологические объекты поражающее действие на значительных расстояниях.

Поражение людей и других живых организмов проникающей радиацией зависит от дозы облучения, времени, в течение которого эта доза получена, площади поверхности тела, подвергшейся облучению, и состояния организма.

Основным источником остаточного излучения (радиоактивное заражение) являются радиоактивные осколки деления, находящиеся в радиоактивном облаке и по мере его движения, выпадающие на землю за счет гравитационного осаждения.

Радиоактивное заражение имеет ряд особенностей: большая площадь поражения (десятки тысяч квадратных километров); длительность сохранения поражающего действия (недели, а иногда и месяцы); трудности обнаружения радиоактивных веществ, не имеющих внешних признаков. Размеры и формы зоны заражения во многом зависят от типа ядерного взрыва, метеорологических условий и рельефа местности. Наибольшая зараженность местности наблюдается при наземных и подземных, надводных и подводных ядерных взрывах.

При наземном ядерном взрыве огненный шар касается поверхности земли. Атмосферный воздух и земная поверхность сильно нагреваются, часть веществ испаряется, измельчается и вовлекается в зону ядерных превращений, где на их поверхность интенсивно оседают радиоактивные вещества. Образовавшееся мощное пылевое облако под действием атмосферной турбулентности разносится на большие расстояния. По мере движения радиоактивного облака и выпадения из него радиоактивных частиц размер зараженной территории увеличивается. На рис.1 схематично представлено изменение уровня радиации по следу облака. След в плане имеет, как правило, форму эллипса, большую ось которого называют осью следа.

Расчет доз облучения при проведении работ в чрезвычайных ситуациях - student2.ru
Рис. 1 Уровень радиации по следу радиоактивного облака.

(а – пространство по следу, б – план облака, L – след облака, 1 – след облака, 2 – ось следа,

3 – уровень радиации по ширине, 4 – уровень радиации по следу облака, А – умеренного заражения Ро=8р/ч, Б – сильного Ро=80р/ч ,В – опасного Ро=240р/ч, Г – чрезвычайно опасного Ро=800р/ч).

Выпадающие частицы очень малы и неодинаковы по размеру, поэтому они распределяются по площади следа неравномерно. На следе радиоактивного облака выделяют зоны умеренного, сильного, опасного и чрезвычайно опасного заражения.

Из-за метеорологических условий и характера местности могут наблюдаться значительные отступления от картины, представленной на рис. 1. В большей степени, например, будут заражены складки местности, холмы и склоны высот, расположенные с наветренной стороны. Следует отметить, что характер распространения радиоактивных веществ, попавших на впалые поверхности, принципиально отличается. Сильно изменить выпадение и процесс переноса радиоактивных веществ может наличие осадков (дождя и т. п.).

С течением времени уровни радиации отдельных зон заражения снижаются. Для определения спада уровня радиации во времени можно использовать выражение

Рt = P0(t/t0)-1.2,

где Рt и Р0 — мощность дозы (уровень радиации) соответственно для времени t и t0, время t0 составляет один час после ядерного взрыва.

Источником светового излучения является светящаяся область, состоящая из нагретых до высокой температуры газообразных продуктов взрыва и воздуха. В первые секунды образования огненного шара его температура может достигать уровня температур солнца, т. е. около 8... 10 тыс. ° С. Время действия светового излучения зависит от мощности ядерного боеприпаса и может продолжаться от 3 до 20 с. Прекращение светового излучения наступает при температурах огненного шара, лежащих ниже 1000 °С. По своему составу световое излучение представляет собой ультрафиолетовые, инфракрасные и видимые лучи. Распространяясь от центра взрыва со скоростью света, световое излучение вызывает ожоги открытых участков тела, временное ослепление или ожоги сетчатки глаз. При взаимодействии светового излучения с материальными объектами оно может отразиться от них, поглотиться ими или пройти через них. Поэтому степень воздействия светового излучения будет определяться не только общим количеством переносимой энергии и временем воздействия, но и свойствами вещества, с которым оно взаимодействует.

Для оценки количества энергии, переносимой световым излучением, вводится понятие светового импульса, под которым понимают количество энергии, падающей на единицу поверхности, перпендикулярной направлению распространения световых лучей, за время свечения. Единица измерения светового импульса—Дж/м2. Световой импульс зависит от мощности и вида взрыва, расстояния от центра взрыва и ослабления светового излучения в атмосфере, а также экранирующего действия дыма, пыли, растительности, рельефа местности и т. д. Световой импульс уменьшается пропорционально квадрату расстояния от центра взрыва.

Наши рекомендации