Сеть массового обслуживания. Исследование транспортных средств по календарному времени

Исследование транспортных средств по календарному времени

Коэффициент использования автотранспорта по календарному времени = Автомобиле-часы в работе (а-час) / Календарный фонд рабочего времени (а-час).

1. Определите путь транспортировки. Сначала выберите транспортное средство, которое будет использоваться для транспортировки продукта, а затем определите местоположения и последовательность, в которой их следует посетить.

2. Определите период действия (период, для которого действителен календарный план). Ограничьте этот период определенными допустимыми днями, к этому моменту присвоив его календарю.

3. Определите фактическую состыковку графиков движения. Сначала присвойте ранее определенные данные (путь транспортировки, срок действия) календарному плану, а затем присвойте ему транспортное средство. Затем определите точные данные состыковки графиков движения, т.е. день и время отправления или же периодическое время отправления. Время отправления связано с начальным местоположением выбранного пути транспортировки.

При использовании календарных планов в оптимизаторе помните следующее.

■ Для транспортных средств с графиком движения система обычно оценивает продолжительность загрузки/разгрузки как нулевую.

■ Время в пути, используемое в календарном поле и в транспортных отношениях, всегда действительно для ресурса, присвоенного календарному плану.

Пример

Календарный план A->B->C: Отправление из местоположения A в 10:00.

Продолжительность A->B: 3 часа

Продолжительность B-> C: 2 часа

Прибытие в местоположение B в 13:00, прибытие в местоположение C в 15:00

■ На протяжении всего пути время определяется в соответствии с часовым поясом начального местоположения. Система игнорирует дополнительные перерывы, определенные для ресурса, что может привести к ошибкам. Поэтому не используйте перерывы транспортных средств с графиком движения.

■ Это также относится к календарям, содержащим нерабочие дни. Следовательно, для транспортных средств с графиком движения определяйте только календари с семью рабочими днями в неделю.

■ Если время открытия, определяемое для местоположений, релевантных для календарного плана, не соответствует времени прибытия/отправления, это может привести к невозможности использования транспортных средств плана с графиком движения. Следовательно, не выполняйте ведение времени открытия для местоположений, релевантных для календарного плана.

При использовании календарных планов рекомендуется использовать в многоуровневом планировании календарное планирование от начальных сроков.

Сеть массового обслуживания

Сеть массового обслуживания (СеМО) представляет собой совокупность конечного числа взаимосвязанных узлов обслуживания, в которой циркулируют заявки, переходящие в соответствии с маршрутной матрицей с выхода одного узла на вход другого. Каждый отдельный узел является разомкнутой СМО и отображает функционально самостоятельную часть реальной системы.

СеМО используются для определения таких важных характеристик моделируемых систем как:

 производительность;

 время доставки заявок (сообщений, пакетов и пр.);

 вероятность потери заявки;

 вероятность блокировки узла;

 допустимые значения нагрузки, при которых обеспечивается требуемое качество обслуживания

и др.

Для наглядного представления СеМО используется граф, вершины которого (узлы) соответствуют отдельным узлам сети, а дуги отображают связи между узлами.

Переход заявок между узлами происходит мгновенно в соответствии с переходными вероятностями Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru , обозначающими вероятность того, что заявка после обслуживания в узле i перейдет в узел j.

Если узлы i и j непосредственно между собой не связаны, то Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru = 0.

Если из узла i возможен переход только в узел j, то Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru = 1.

Под входным потоком некоторого узла будем понимать поток заявок, приходящих на вход этого узла из внешней среды. В общем случае число входных потоков СеМО равно числу образующих сеть узлов.

Наиболее разработанной является теория экспоненциальных СеМО, основанная на аппарате марковских процессов с непрерывным временем, с помощью которой можно получить аналитические выражения для нахождения основных показателей исследуемых систем.

Экспоненциальной называют сеть, обладающую следующими свойствами:

 входные потоки пуассоновские;

 время обслуживания заявок в узлах распределено по экспоненциальному закону;

 заявки в узлах обслуживаются в порядке поступления;

 переход заявки с выхода i-го узла на вход j-го узла является независимым случайным событием, имеющим вероятность Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru , Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru - вероятность ухода заявки из CeМО.

Из этих свойств следует, что время обслуживания в каждом узле не зависит ни от времени обслуживания в других узлах, ни от параметров входящего потока, ни от состояния сети, ни от маршрутов следования требований.

Чтобы задать разомкнутую экспоненциальную СеМО необходимо задать значения следующего набора параметров:

 число узлов N;

 число каналов i-ого узла Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ;

 матрицу вероятностей передач Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ;

 интенсивности входных потоков заявок Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ;

 интенсивности Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru или средние времена Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru обслуживания заявок в узлах Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru .

Интенсивности входных потоков в узлах λ1,..., λN находятся из уравнений баланса сети (см.далее) с учетом свойств слияния и разветвления потоков.

Стационарность сети означает, что среднее число заявок в любом ее фрагменте неизменно, т.е., суммарная интенсивность входящих в эту часть потоков равна суммарной интенсивности выходящих. Математическая запись этого факта называется уравнением баланса. Если в качестве фрагментов сети взять ее узлы, то, составляя уравнения баланса для каждого узла, можно получить систему уравнений, связывающую неизвестные интенсивности λ1,..., λN c известными Λ1,.., ΛN. В этом случае для N неизвестных получаются N уравнений. Добавлением к ним уравнения баланса для входных и выходных потоков всей сети в целом, получается система из N+1 уравнений, одно из которых можно использовать для проверки.

Сеть стационарна, если стационарны все ее узлы, т.е. если

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑1)

где Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru

Поток заявок на входе отдельного узла складывается из входного потока сети (возможно, нулевой интенсивности) и из потоков, поступающих с выходов других узлов. Входной поток узла в экспоненциальной сети в общем случае пуассоновским не является, поэтому узлы СеМО в общем случае не экспоненциальные. Тем не менее, узлы все же часто считают экспоненциальными. Это позволяет найти из уравнений баланса значения интенсивностей λ1,..., λNвходных потоков заявок и воспользоваться для расчета показателей сети соответствующими аналитическими моделями теории МО.

Помимо показателей отдельных узлов для описания сети используются показатели, отражающие свойства сети в целом. К наиболее важным относятся следующие.

 Среднее время пребывания заявки в сети.

Время пребывания заявки в сети определяется как время, прошедшее с момента прихода заявки в сеть до момента ее ухода из сети. Среднее время пребывания рассчитывается по формуле:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑2)

где Λ = Λ1+...+ΛN,

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru - среднее время пребывания заявки в j-ом узле (см. п.? раздела).

 Передаточные коэффициенты.

Под передаточным коэффициентом понимается среднее значение числа приходов Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru заявки i-го входного потока в j-ый узел за время пребывания этой заявки в сети.

В стационарном режиме при любых Λ1,...ΛN для λ1,...λN справедливо:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑3)

Интенсивности прихода заявок в j-ый узел λ1, λ2… λN выражены в (11‑3) через интенсивности входных потоков сети Λ1,... ΛN.

Суммы в правой части (11‑3) можно рассматривать как элементы матрицы-строки, представляющей собой произведение вектор-строки Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru =Λ1,...ΛN на матрицу Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru . Таким образом, (11‑3) можно записать в матричном виде:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru

где Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru - вектор-строка λ1,...λN.

Положив в (11‑3) Λ1 = 1 и Λ2 = ... = ΛN = 0, получим

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑4)

т.е., строку коэффициентов Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru - матрицы Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru можно найти, решив уравнения баланса сети при Λ1=1, Λ2 = ... = ΛN = 0: согласно (11‑4), найденные значения λ1,..., λN будут численно равны коэффициентам Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ,... Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru .

Значения Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ,..., Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru находятся как решение уравнений баланса для Λk=1 и Λi = 0, i≠k.

Таким образом, находим последовательно значения элементов всех строк матрицы Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru .

 Средние входовые времена пребывания в сети.

Средним входовым временем пребывания в сети Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru называется среднее время пребывания в сети заявки, поступающей из i-го входного потока, Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru .

Показатели Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru можно вычислить по формуле:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑5)

 Абсолютные пропускные способности.

Абсолютную пропускную способность по i-му входу Ai можно найти непосредственно по ее определению.

Записав условие стационарности СеМО в виде:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru

что эквивалентно

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru

и выражая λi через Λi из (11‑3), получим развернутую форму условия стационарности:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑6)

Некоторые из неравенств (11‑6) оказываются излишними: такие неравенства можно исключать из (11‑6), не изменяя решения системы.

Если все входные интенсивности сети, кроме Λi, положить равными нулю, то, используя развернутую форму записи условий стационарности, получим, что для стационарности необходимо, чтобы

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru

или

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑7)

Величина Ai определится как минимум значений, стоящих в правых частях неравенств (11‑7):

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru

 Условные пропускные способности.

Условной пропускной способностью по i-му входу Bi называют максимальное значение интенсивности Λi, при котором сеть остается стационарной.

При заданных Λk (k≠i) сеть стационарна для любых значений Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru .

Условная пропускная способность, как и абсолютная, может быть найдена из (11‑3). Для нахождения Bi в (11‑3) следует подставить значения всех входных интенсивностей сети, кроме Λi и разрешить полученную систему относительно Λi:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru (11‑8)

Bi находится как наименьшая из правых частой в (11‑8).

 Запасы по пропускным способностям.

Запас по пропускным способностям Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru , показывает, насколько может быть увеличена интенсивность прихода заявок на i-ом входе при фиксированных остальных без нарушения условия стационарности.

21) Изучение объёмов грузовых перевозок и грузопотоков

Организация движения подвижного состава при перевозках должна обеспечивать наибольшую производительность и наименьшую себестоимость перевозок. Движение подвижного состава происходит по маршрутам.

Маршрут движения – это путь следования подвижного состава при выполнении перевозок.

Длина маршрута – это путь, проходимый автомобилем от начального до конечного пункта маршрута.

Оборотом подвижного состава на маршруте называется законченный цикл движения, т.е. движение по всему маршруту с возвращением подвижного состава в начальный пункт, из которого оно началось, с выполнением всех соответствующих операций.

Маршрутизация – разработка таких маршрутов движения, которые обеспечивают наилучшее использование пробега. Выбор маршрута зависит от расположения погрузочно-разгрузочных пунктов, размера партии груза и типа подвижного состава.

Маятниковым маршрутом называется такой маршрут, при котором движение между двумя пунктами многократно повторяются. Маятниковые маршруты бывают трех видов: с обратным не груженым пробегом, с обратным не полностью груженым пробегом, с груженым пробегом в обоих направлениях.

Маршрут с обратным не груженым пробегом носит название простого маятникового. Такой маршрут является наиболее нецелесообразным, т.к. при работе на нем за один оборот совершается только одна ездка с грузом. Коэффициент использования пробега β0на простом маятниковом равен 0,5, т.к. lег = lx.

Объем перевозок (Q) измеряется в тоннах и показывает количество груза, которое уже перевезено или необходимо перевезти за определенный период времени.

Грузооборот (P) измеряется в тонно-километрах и показывает объем транспортной работы по перемещению груза, которая уже выполнена или должна быть выполнена в течении определенного периода времени.

При определении объема перевозок необходимо учитывать, что одни и те же грузы могут перевозиться несколько раз. Это вызвано тем, что многие грузы не всегда следуют от места производства непосредственно к месту потребления.

Повторность приводит к тому, что объем перевозок может быть больше фактического количества груза, произведенного или потребленного в данном месте. Оно определяется коэффициентом повторности (Кповт), представляющим собой отношение объема перевозок к фактически произведенному или потребленному количеству груза:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru .

Годовой грузооборот и объем перевозок, как правило, неравномерно распределяются по отдельным месяцам и кварталам. Степень неравномерности перевозок определяется коэффициентом неравномерности перевозок nн:

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ,

Сеть массового обслуживания. Исследование транспортных средств по календарному времени - student2.ru ,

Qмакс, Pмакс – максимальные значения объема перевозок и грузооборота;Qср, Pср – средние значения объема перевозок и грузооборота за определенный период времени.

Грузовым потоком (грузопотоком) называется количество груза в тоннах, следующего в определенном направлении за определенный период времени.

Наши рекомендации