Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування

Задання потоку розподілу проміжку між вимогами здійснюється функцією Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , а функцією Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru розподіляється тривалість обслуговування. У результаті програма моделювання містить два генератори випадкових величин Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru і Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru відповідно до заданих функцій A(t) і B(t), змінні t0 для зберігання моменту надходження чергової вимоги, t1, t2,..., t для зберігання моменту звільнення k-го ( Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru ) каналу й p1, p2 ,…,p¥ для зберігання моменту надходження вимоги у чергу.

Пояснимо процес моделювання на прикладі. Приймемо N=3 і проаналізуємо роботу алгоритму з моменту надходження п'ятої вимоги. Перший генератор формує чергове випадкове число z5, що відповідає надходженню п'ятої вимоги Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Припустимо, що до моменту Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru перший канал був зайнятий четвертою вимогою, а другий і третій відповідно другою й третьою, вимоги в накопичувачі відсутні. Тоді Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Кожне із чисел t1 , t2, t3 визначає момент звільнення відповідного каналу.

При послідовному зайнятті каналів значення t0 по черзі порівнюється з t1 , t2,…, tN, поки не виявляється комірка з моментом звільнення Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Нехай виявиться, що Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru й Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , а Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Це означає, що до моменту надходження п'ятої вимоги перший і другий канал залишалися зайнятими, а третій уже звільнився й може прийняти на обслуговування п'яту вимогу, що надійшла. Тоді t3 прирівнюється t0. Потім генерується випадкове число Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , що визначає тривалість обслуговування п'ятої вимоги й додається до t3.

Шостий цикл починається з генерації випадкового числа z6. Як і раніше, t0=t0+z6. Потім здійснюється почергове порівняння вмісту нульової комірки із умістом інших комірок. Якщо виявиться що, Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru і Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , то шоста вимога буде поміщена в накопичувач, Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru .

Сьомий цикл починається з генерації випадкового числа z7. Як і колись, t0=t0+z7. Оскільки в нас є вимога в накопичувачі, то Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Потім Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , здійснюється почергове порівняння вмісту нульової комірки із умістом інших комірок. Якщо виявиться, що Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru і Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , то сьома вимога буде поміщена в другий канал, а в накопичувачі відбудеться зрушення Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Далі Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , і проводиться повторна перевірка зайнятості каналів. Якщо каналів вільних не виявилося, то вимога залишається в накопичувачі, якщо вони є, то вимога надходить на канал, що звільнився.

Для підрахунку кількості Квим, що надійшли і поміщених у накопичувач Кн вимог використовується два лічильники. У перший додається одиниця при кожній генерації числа z, а в другий – при кожному поміщенні вимоги в накопичувач. Відношення Квимн дасть по закінченні чергової серії статистичну оцінку знаходження вимог у накопичувачі.

Порядок виконання роботи

Початкові умови моделювання.

Параметр поступаючого потоку Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru (викл/хв), де Nп – номер у журналі.

Середній час обслуговування й кількість каналів визначається за варіантом з табл. 6.1.

Таблиця 6.1

Nп Вар 1,7,13 2,8,14 3,9,15 4,10,16 5,11,17 6,12,18
N
h,сек

На початку моделювання в системі вільні всі канали.

Порядок моделювання

1. Моделювання здійснюється на інтервалі [t1,t2] хв., де t1=Nn+1, t2=Nn+200, а Nn – номер у журналі.

Надходження вимоги моделюється аналогічно першій лабораторній роботі, запам'ятовується в масиві змінної tпост і підраховується лічильником Квим.

2. Процес обслуговування моделюється за показовим законом розподілу за формулами

Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru ; Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru .

Час звільнення каналу визначається так: Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru .

Канали займаються послідовно. Якщо до моменту надходження вимоги зайняті всі канали, то вимога йде в накопичувач і підраховується кількість надійшовших у накопичувач Кн вимог.

3. Побудувати графіки роботи каналів.

4. Побудувати графік роботи накопичувача.

5. Визначити модельну ймовірність наявності черги

Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru ,

де Кн - кількість вимог у накопичувачі; Квим – загальна кількість вимог.

Визначити Рчер по формулі Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru ,

де Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru , Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru .

6. Висновок.

6.4 Контрольні запитання і завдання

1. Указати умову існування сталого режиму.

2. Вивести основні характеристики якості системи.

3. У чому полягає метод Монте-Карло?

Рекомендована література

1 Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru Моделювання процесу обслуговування в СМО. Задання потоку розподілу проміжку між вимогами здійснюється функцією , а функцією розподіляється тривалість обслуговування - student2.ru . Хинчин А.Я. Работы по математической теории массового обслуживания. – М.: Машиностроение, – 1963. – 235с.

2. Клейнрок Л. Теория массового обслуживания. – М.: Машиностроение. – 1979. – 363c.

3. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. – М.: Машиностроение. – 1987. – 323c.

Наши рекомендации