Расчет тормозных свойств транспортного средства
Измерителями тормозной динамичности автомобиля являются замедление, время и путь торможения, остановочный путь в определенном интервале скоростей. Для их определения необходимо знать характер замедления во времени.
V, м/с
Sр
tр
tр, с
Sр, м
Рисунок 8.3 – Скоростная характеристика
Расчетная формула остановочного времени
t0 = t1 + t2 + t3 + t4 + t5, (9.1)
где t1 – время реакции водителя, t1 = 0,3 – 2,5 с; t2 – время срабатывания привода тормозов, t2 = 0,4 с, для автопоездов – 0,6 с; t3 – время нарастания замедления, t3 = 0,6 с; t5 – время оттормаживания, для гидропривода t5 = 0,3 с, для пневмопривода – 1,5-2,0 с; t4 – время торможения с установившимся замедлением,
t4 = , (9.2)
где V0 – начальная скорость торможения, км/ч; jн – замедление в режиме наката, приближенно jн = 9,8 ¦, где ¦ - коэффициент сопротивления качению, ¦ = 0,007 – 0,015; j – установившееся замедление,
j = , (9.3)
где j - коэффициент сцепления шин с дорогой; g = 9,8 м/с2; КЭ – коэффициент эффективности торможения (таблица 9.1).
Таблица 9.1 – Коэффициенты эффективности торможения
Параметры | Значения параметров | ||||
j | 0,8 | 0,7 | 0,6 | 0,5 | 0,4 |
КЭ | 1,96 | 1,76 | 1,48 | 1,21 | 1,0 |
Остановочный путь
S0 = S1 + S2 + S3 + S4 + S5. (9.4)
Где
S1 = (9.5)
S2 = ; (9.6)
S3 = ; (9.7)
S4 = (9.8)
S5 = , (9.9)
С учетом выражения (9.4) строятся зависимости Sо = ¦(Vо) для значений коэффициента j, равных 0,8; 0.6; 0.4.
На основании проведенных расчетов строится тормозная диаграмма для начальной скорости 40 км/ч (рисунок 9.1).
|
|
|
|
|
|
|
Где
Vо = 40 км/ч;
VВ = V0 – 3.6jн t2; (9.10)
VС = VВ – 1,8jt3; (9.11)
VД = VС – 3.6jt4. (9.12)
Материалы раздела представить описательной теоретической частью, тормозной диаграммой и зависимостями Sо = ¦(Vо).
На основании материалов раздела дать вывод о характере торможения в зависимости от скоростных и дорожных условий.
Определение показателей устойчивости, маневренности
Устойчивость автомобиля
Устойчивость автомобиля непосредственно связана с безопасностью дорожного движения. Нарушение устойчивости выражается в произвольном изменении направления движения, его опрокидывании или скольжении шин по дороге. Различают поперечную и продольную устойчивость автомобиля. Более вероятна и опасна потеря поперечной устойчивости.
Показателями поперечной устойчивости автомобиля при криволинейном движении являются максимально возможные скорости движения по дуге окружности и угол поперечного уклона дороги. Оба показателя определяются из условий заноса или опрокидывания автомобиля.
Максимально допустимая скорость автомобиля по скольжению
Vcк = , (10.1)
где R – радиус дуги, м; φу – коэффициент поперечного сцепления,
φу = (0,5 – 0,85)φ, (10.2)
где φ – коэффициент сцепления шин с дорогой в продольном направлении, для асфальто- и цементобетонного сухого покрытия φ = 0,7-0,8; β – угол поперечного уклона.
Знак «+» в числителе и « - » в знаменателе берутся при движении по уклону, наклоненному к центру поворота дороги, если же он наклонен в сторону, противоположную центру поворота дороги, то в числителе ставится знак « - », а в знаменателе «+».
При β = 0
Vcк = . (10.3)
Максимально допустимая скорость по опрокидыванию
Vопр = , (10.4)
где hц – ордината центра масс груженого автомобиля, м; В – колея автомобиля, м.
При β = 0
Vопр = . (10.5)
Потеря автомобилем продольной устойчивости выражается в буксовании ведущих колес, что наблюдается при преодолении автопоездом затяжного подъема со скользкой поверхностью. Показателем продольной устойчивости автопоезда в составе с прицепом служит максимальный угол подъема, преодолеваемого автомобилем без буксования ведущих колес
tgβбук = , (10.6)
где а – расстояние от центра масс автомобиля-тягача до оси передних колес, м; L – база автомобиля-тягача, м; hц – высота сцепного устройства прицепа, м; Gа – вес автомобиля-тягача, т; Gпр – вес прицепа, т.
Для одиночного автомобиля (автопоезда в составе с полуприцепом)
tgβбук = , (10.7)
где а – расстояние от центра масс груженого транспортного средства до оси передних колес, м.
Маневренность автомобиля
Маневренность автомобиля характеризуется формой и размерами габаритной полосы криволинейного движения (ГПД), под которой понимается площадь опорной поверхности, ограниченной проекциями на нее траекторий крайних выступающих точек транспортного средства.
При курсовом проектировании ГПД определяется применительно к круговому движению автомобиля с минимальным радиусом поворота Rп (приведен в технической характеристике автомобиля).
Построение ГПД одиночного автомобиля (тягача) с управляемыми колесами передней оси (рисунок 10.1) осуществляется следующим образом. Из центра О радиусом поворота Rп в масштабе проводим кривую траектории внешнего переднего колеса автомобиля. Затем от оси ОО1 откладываем отрезок L, равный базе транспортного средства. Проводим ось А1А. От точки пересечения оси А1А с кривой траектории внешнего переднего колеса откладываем отрезок, равный колеи передних колес. Из середины отрезка проводим перпендикуляр до пересечения с осью ОО1.Точка пересечения является серединой ведущего моста автомобиля. Отложим отрезок, равный колеи задних колес. Получим кинематическую схему ходовой части автомобиля, на которую накладываем масштабное изображение контура общего вида транспортного средства в плане. Затем из центра поворота О последовательно проводим кривые радиусами: Rо – радиус кривизны середины заднего моста; Rн – наружный радиус поворота; Rв – внутренний радиус поворота. Разность между наружным Rн и внутренним Rв радиусами поворота составляет ширину динамического коридора, т. е. ГПД. Разность между Rн и Rо является наружной составляющей Ан, между Rо и Rв – внутренней составляющей габаритной полосы движения Ав.
ГПД автопоезда с двухосным прицепом строится последовательно для каждого звена транспортного средства. Алгоритм построения ГПД аналогичен рассмотренному выше примеру (рисунок 10.2).
Раздел представить описанием теоретического материала, зависимостями Vск = ƒ(R) и Vопр = ƒ(R), расчетом выражения (10.6) или (10.7), построением ГПД.