Вертикальный пневмокамерный питатель для сыпучих материалов
ВВЕДЕНИЕ.
Подача сыпучих материалов (СМ) как управляющее воздействие на технологические объекты реализуется в целом ряде производств химической, пищевой, металлургической отраслей, в промышленности строительных материалов и др. В качестве конкретных примеров можно привести процессы сушки в кипящем слое, производства серной кислоты, производства суперфосфата, процесс каталитического крекинга, приготовление различных растворов и паст, загрузку агрегатов измельчения, загрузку классификаторов. Расход СМ может реализоваться как в непрерывном, так и в импульсном режиме, с перерывами между подачей доз. В последнем случае используется частотно- или широтно-импульсная модуляция импульсов расхода. Импульсный характер управляющего воздействия на параметры технологических объектов при постоянной амплитуде импульсов позволяет обеспечить ряд дополнительных, иногда уникальных возможностей для управления, в частности:
- физическая реализация управления в виде строго регламентированных весовым или объемным методом порций (доз) материала повышает точность соответствия величины среднего расхода заданию [1];
- наличие в управляющем воздействии релаксационных интервалов (пауз между импульсами) позволяет повысить качество управления объектами с чистым запаздыванием [2];
- постоянная величина мгновенного расхода в пределах единичного импульса может быть стабилизирована на том значении, которое в наибольшей степени соответствует требованиям конкретных условий технологического процесса, свойствам материала и т. д [3];
- в течение времени релаксации возможно проводить технологические и технические операции, в ином случае искажающие управление, в частности, осуществлять дозагрузку взвешиваемых расходных емкостей при весовом дозировании материала [4];
- при импульсном контакте веществ, участвующих в технологическом процессе, значительно возрастает интенсивность тепло- и массообмена, повышается эффективность химического взаимодействия;
- параметры большинства материальных потоков при постоянной величине расхода могут быть надежно определены расчетным путем;
- ряд задач оптимального управления не может быть решен в традиционном классе непрерывных траекторий, но требует импульсного управляющего воздействия [5].
Для управляемой подачи и дозирования сыпучих материалов в технологические объекты управления применяют гравитационные, механические, вибрационные, аэрационные и пневматические питатели [3].
Основные требования к характеристикам питателей и дозаторов для сыпучих материалов, выполняющим функции ИУ АСР, могут быть сведены к следующим:
– управление расходом твердой фазы в заданном диапазоне;
– формирование выходного расхода с заданной точностью;
– минимум удельных затрат энергии на перемещение двухфазной смеси;
– линейность зависимости «управляющий сигнал − выходной расход материала» («расходной» статической характеристики);
– возможность расчета расходной характеристики;
– возможность коррекции расходной характеристики;
– максимально возможная инвариантность выходного расхода к внешним и внутренним возмущениям;
– минимальная сложность конструкции и отсутствие (или минимум) движущихся частей;
– отсутствие контакта твердой фазы с внешней средой.
Предъявленным требованиям в значительной степени удовлетворяют пневматические питатели. Эти агрегаты могут быть реализованы без подвижных элементов, контактирующих с абразивной средой, в силу чего существенно превосходят механические питатели по надежности работы. При соответствующем выборе режима перемещения в пневмопитателях отсутствует разрушающее воздействие на частицы твердой фазы. Эти устройства обладают практически полной герметичностью, что также повышает их надежность и обеспечивает сохранность окружающей среды. Управление расходом при помощи пневмопитателей может быть реализовано как в непрерывной, так и в импульсной форме.
Целью курсового проекта является разработка вертикального пневмокамерного питателя (ВПКП) для объемного частотно-импульсного дозирования легкосыпучего зернистого материала в технологические объекты управления. При импульсном режиме работы ВПКП определяется как дозатор с фиксированной скоростью потока (ДФС). Как показано в [] и далее здесь, импульсное управление для ВПКП может быть организовано без дополнительного управляющего импульсного элемента за счет обратной связи в самом питателе. Кроме того, частотно-импульсный режим подачи материала через ВПКП (с полным опорожнением емкости) позволяет избежать проблем, связанных с необходимостью создания высокого давления при повторном пуске питателя после его плановой или аварийной остановки (нет необходимости преодолевать сопротивление столба материала, осевшего в стволе).
В ходе проектирования необходимо решить следующие задачи:
– определить параметры импульса расхода (амплитуду и длительность), отвечающие требованиям к параметрам управляющего воздействия;
– рассчитать основные конструктивные параметры питателя;
– рассчитать параметры несущего воздуха;
– выбрать соответствующее воздуходувное оборудование и регулирующую арматуру.
ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ
Заданы:
– Максимальный средний (во времени) массовый расход материала , кг/с;
– параметры материала: плотность и насыпная плотность , кг/м3; средний эквивалентный диаметр частицы материала , м; угол естественного откоса , угл. град.;
– параметры несущего воздуха: температура , °С, плотность , кг/м3, динамическая вязкость , Па∙с;
– высота подачи Н, м;
– ограничение по величине истинной объемной концентрации твердой фазы в потоке м3/м3;
– максимально допустимая поперечная нагрузка на ствол , кг/(м2∙с);
– переходная характеристика (передаточная функция) объекта;
– максимально допустимая амплитуда изменения параметра объекта от воздействия поступившей дозы материала , отн. ед.
Определить:
– параметры импульса расхода (амплитуду , кг/с, и длительность , с);
– площадь проходного сечения транспортного ствола STP;
– объем камеры питателя V, м3;
– высоту Н ЗМП и диаметр d ЗМП загрузочного материалопровода;
– потребный расход несущего воздуха , кг/с;
– потери напора на транспортирование двухфазной смеси;
– выбрать воздуходувный агрегат, обеспечивающий полученные параметры двухфазного потока;
– выбрать принципиальную схему включения – отключения подачи воздуха (при необходимости);
– выбрать конкретное оборудование для управления подачей воздуха;
– определить суммарное минимально необходимое время релаксации ;
– выполнить проверку результата расчета по критерию . Графическая часть работы должна содержать схему питателя; график импульса расхода и реакции заданного объекта на единичный импульс расхода; чертеж камеры питателя, заполненной материалом (для расчета объема); схему для расчета потерь давления с указанием местных сопротивлений.
РАСЧЕТНАЯ ЧАСТЬ
СТАТИЧЕСКИЙ РАСЧЕТ ВПКП
ВАРИАНТЫ ЗАДАНИЙ
Таблица 1 — Параметры материалов
Вари- ант | Средний максим. расход матери- ала , (кг/с) 10-3; | Параметры частиц материала | Высо- та пода- чи Н, м; | Параметры воздуха | |||||
Плот- ность , кг/м3 | Насып- ная Плот- ность , кг/м3 | Услов ный диаметр dM, м∙10-3 | Угол естест- венного откоса φ, град. | Тем- пера- тура tВ, С 0. | Вяз- кость m,, Па∙с х х 10-5 | Плот- ность rВ, кг/м3 | |||
3,5 | 3,78 | 0,472 | |||||||
1,9 | 1,815 | 1,2 | |||||||
2,0 | 1,815 | 1,2 | |||||||
Таблица 2 — Параметры объекта управления
Вариант | Аппроксимация объекта управления | Макси- мально допус- тимая реакция , отн. ед. | Макси- мально допус- тимая поперечная нагрузка , кг/(с∙м2) | Приме- чания | |||||
Апериодическое звено | Интегрирующее звено | ||||||||
ko, с | t о,с | То,с | ko, с | t о,с | То,с | ||||
10,0 | - | 0,10 | |||||||
7,1 | - | 7,1 | 0,14 | ||||||
8,3 | 8,3 | 0,12 | |||||||
ПРИЛОЖЕНИЕ А
(обязательное)
Образец оформления титульного листа пояснительной записки
____________________________________________________________________________________________________________________
Санкт-Петербургский государственный Технологический институт
(технический университет)
Кафедра автоматизации процессов химической | Факультет | Информатики и управления |
промышленности | Курс | IV |
Группа |
Дисциплина: «Системы комплексной механизации»
Пояснительная записка к курсовому проекту
«РАСЧЕТ И ПРОЕКТИРОВАНИЕ ИМПУЛЬСНОГО
ПНЕВМАТИЧЕСКОГО ДОЗАТОРА ДЛЯ СЫПУЧИХ МАТЕРИАЛОВ»
Студент _____________________
Руководитель ______________________
Санкт-Петербург, 2010
ПРИЛОЖЕНИЕ Б
(обязательное)
Определение скорости твердой фазы в пределах разгонного участка
При равноускоренном движении и нулевых начальных условиях путь S, пройденный за время t
, | Б.1 |
а скорость к моменту t:
. | Б.2 |
Учитывая, что в конце разгонного участка (на высоте ) , из В.2 получим:
. | Б.3 |
Тогда на высоте
. | В.4 |
СОДЕРЖАНИЕ
Введение…………………………………………………………………….. | ||
1. | Вертикальный пневмокамерный питатель для сыпучих материалов…... | |
2. | Исходные данные для проектирования……………………… | |
3. | Расчетная часть…………………………………………………………….. | |
3.1 | Статический расчет………………………………………………………… | |
3.1.1 | Расчет номинальной (рабочей) скорости несущего воздуха……………. | |
3.1.2 | Расчет параметров импульсной последовательности…………………… | |
3.1.3 | Определение работоспособности питателя при загрузке……………….. | |
3.1.4 | Расчет параметров загрузочного материалопровода……………………. | |
3.2 | Расчет потерь давления при выдаче дозы………………………………… | |
3.3 | Выбор воздуходувного агрегата…………………………………………... | |
3.4 | Определение геометрических параметров камеры питателя…………… | |
Список использованных источников……………………………………………… | ||
Варианты заданий…………………………………………………………………... | ||
Приложение А. Образец оформления титульного листа пояснительной записки. | ||
Приложение Б. Определение скорости твердой фазы в пределах разгонного участка ……………………………………………………………………………… |
[1] Скорость витания равна и противоположна по знаку скорости свободного падения частицы.
ВВЕДЕНИЕ.
Подача сыпучих материалов (СМ) как управляющее воздействие на технологические объекты реализуется в целом ряде производств химической, пищевой, металлургической отраслей, в промышленности строительных материалов и др. В качестве конкретных примеров можно привести процессы сушки в кипящем слое, производства серной кислоты, производства суперфосфата, процесс каталитического крекинга, приготовление различных растворов и паст, загрузку агрегатов измельчения, загрузку классификаторов. Расход СМ может реализоваться как в непрерывном, так и в импульсном режиме, с перерывами между подачей доз. В последнем случае используется частотно- или широтно-импульсная модуляция импульсов расхода. Импульсный характер управляющего воздействия на параметры технологических объектов при постоянной амплитуде импульсов позволяет обеспечить ряд дополнительных, иногда уникальных возможностей для управления, в частности:
- физическая реализация управления в виде строго регламентированных весовым или объемным методом порций (доз) материала повышает точность соответствия величины среднего расхода заданию [1];
- наличие в управляющем воздействии релаксационных интервалов (пауз между импульсами) позволяет повысить качество управления объектами с чистым запаздыванием [2];
- постоянная величина мгновенного расхода в пределах единичного импульса может быть стабилизирована на том значении, которое в наибольшей степени соответствует требованиям конкретных условий технологического процесса, свойствам материала и т. д [3];
- в течение времени релаксации возможно проводить технологические и технические операции, в ином случае искажающие управление, в частности, осуществлять дозагрузку взвешиваемых расходных емкостей при весовом дозировании материала [4];
- при импульсном контакте веществ, участвующих в технологическом процессе, значительно возрастает интенсивность тепло- и массообмена, повышается эффективность химического взаимодействия;
- параметры большинства материальных потоков при постоянной величине расхода могут быть надежно определены расчетным путем;
- ряд задач оптимального управления не может быть решен в традиционном классе непрерывных траекторий, но требует импульсного управляющего воздействия [5].
Для управляемой подачи и дозирования сыпучих материалов в технологические объекты управления применяют гравитационные, механические, вибрационные, аэрационные и пневматические питатели [3].
Основные требования к характеристикам питателей и дозаторов для сыпучих материалов, выполняющим функции ИУ АСР, могут быть сведены к следующим:
– управление расходом твердой фазы в заданном диапазоне;
– формирование выходного расхода с заданной точностью;
– минимум удельных затрат энергии на перемещение двухфазной смеси;
– линейность зависимости «управляющий сигнал − выходной расход материала» («расходной» статической характеристики);
– возможность расчета расходной характеристики;
– возможность коррекции расходной характеристики;
– максимально возможная инвариантность выходного расхода к внешним и внутренним возмущениям;
– минимальная сложность конструкции и отсутствие (или минимум) движущихся частей;
– отсутствие контакта твердой фазы с внешней средой.
Предъявленным требованиям в значительной степени удовлетворяют пневматические питатели. Эти агрегаты могут быть реализованы без подвижных элементов, контактирующих с абразивной средой, в силу чего существенно превосходят механические питатели по надежности работы. При соответствующем выборе режима перемещения в пневмопитателях отсутствует разрушающее воздействие на частицы твердой фазы. Эти устройства обладают практически полной герметичностью, что также повышает их надежность и обеспечивает сохранность окружающей среды. Управление расходом при помощи пневмопитателей может быть реализовано как в непрерывной, так и в импульсной форме.
Целью курсового проекта является разработка вертикального пневмокамерного питателя (ВПКП) для объемного частотно-импульсного дозирования легкосыпучего зернистого материала в технологические объекты управления. При импульсном режиме работы ВПКП определяется как дозатор с фиксированной скоростью потока (ДФС). Как показано в [] и далее здесь, импульсное управление для ВПКП может быть организовано без дополнительного управляющего импульсного элемента за счет обратной связи в самом питателе. Кроме того, частотно-импульсный режим подачи материала через ВПКП (с полным опорожнением емкости) позволяет избежать проблем, связанных с необходимостью создания высокого давления при повторном пуске питателя после его плановой или аварийной остановки (нет необходимости преодолевать сопротивление столба материала, осевшего в стволе).
В ходе проектирования необходимо решить следующие задачи:
– определить параметры импульса расхода (амплитуду и длительность), отвечающие требованиям к параметрам управляющего воздействия;
– рассчитать основные конструктивные параметры питателя;
– рассчитать параметры несущего воздуха;
– выбрать соответствующее воздуходувное оборудование и регулирующую арматуру.
ВЕРТИКАЛЬНЫЙ ПНЕВМОКАМЕРНЫЙ ПИТАТЕЛЬ ДЛЯ СЫПУЧИХ МАТЕРИАЛОВ
Принципиальная схема вертикального пневмокамерного питателя для сыпучих материалов (ВПКП) представлена на рисунке 1.
1 ― рабочая камера; 2 ― транспортный ствол; 3 ― аэроднище; 4 ― вентилятор;
5 ― привод вентилятора; 6 ― устройства для настройки рабочих характеристик питателя; 7 ― загрузочный материалопровод; 8 ― стабилизирующая воронка; 9 ― загрузочный бункер; 10 ― материалоотделитель; 11 ― аспирационный канал. массовые расходы несущего воздуха и твердого материала.
Рисунок 1 ― Принципиальная схема ВПКП
По вертикальной оси рабочей камеры 1 питателя расположен транспортный ствол 2, а в нижней ее части ― аэроднище 3, под которое вентилятором 4 подается несущий воздух. Высота транспортного ствола сравнима с высотой рабочей камеры. Вентилятор приводится электродвигателем 5. Загрузка камеры осуществляется естественным (гравитационным) путем по загрузочному материалопроводу (ЗМП) 7. Столб ожиженного материала в ЗМП изолирует камеру от внешней среды (атмосферы). Расстояние срезов транспортного ствола и ЗМП от аэроднища можно настраивать винтовыми устройствами 6. Постоянство высоты столба материала в ЗМП обеспечивается стабилизирующей воронкой 8, установленной под разгрузочным отверстием питающего бункера 9. Фиксация высоты столба материала в загрузочном материалопроводе позволяет избежать деформации импульсов и стабилизировать управляющее воздействие на объект подачи.
Материалоотделитель 10 служит для разделения потоков воздуха и твердой фазы при выдаче последней в объект управления. Аспирационный канал 11 перекрыт сеткой, предотвращающей унос мелкой фракции материала.
В режиме ДФС, устройство работает следующим образом. В исходном состоянии мерная камера питателя заполнена материалом, свободно поступившим в нее под действием силы тяжести через ЗМП 5. Количество материала, находящегося в камере, определяется не только конструктивными параметрами последней, но и углом естественного откоса материала. При подаче воздуха под аэроднище материал подхватывается потоком и, через транспортный ствол, выводится в материалоотделитель и, через него в объект управления. Давление в камере питателя устанавливается таким образом, чтобы в процессе выдачи дозы материал из ЗМП в камеру не поступал, т. е.
(1) |
где – рабочее давление в камере питателя;
– давление расширенного слоя материала в ЗМП;
– плотность расширенного слоя в ЗМП;
– ускорение свободного падения.
После опустошения камеры давление в ней падает, и камера начинает заполняться.Подачу воздуха под аэроднище прекращают и возобновляют при поступлении команды (или разрешения) на подачу следующей дозы. При подаче материала в виде импульсной последовательности с постоянными параметрами импульсов и переменной частотой их подачи, средний во времени объемный расход материала
(2) |
В (2) частота выдачи доз, Т – период выдачи.
Параметры импульсной последовательности должны быть выбраны таким образом, чтобы промежуток времени между импульсами при максимальной частоте подачи позволял с некоторым запасом по времени заполнить камеру питателя. Кроме этого, промежуток времени должен включать в себя также время, необходимое для пуска и останова аппаратуры подачи воздуха.
Основное влияние на точность объемного отмеривания дозы при заполнении камеры оказывают изменения гранулометрического состава и влажности материала (изменяется угол естественного откоса материала). На сухом материале при вариации скорости воздуха от 13 до 16 м/с экспериментально определенная погрешность по массе выданной дозы не превышает 1,7%. Источником погрешности, очевидно, является неконтролируемая подача мелких частиц материала при нарастании и сбросе давления в камере. Объяснить это можно следующим образом. При нарастании давления сначала происходит унос мелкой фракции и одновременное дозаполнение камеры вплоть до полного запирания ЗМП, т. е. объем дозы неконтролируемо изменяется. При сбросе давления материал начинает поступать в камеру, но расход воздуха еще достаточен для уноса, и выдача материала некоторое время еще продолжается.
Процесс выдачи материала питателем нельзя рассматривать в отрыве от реакции на него технологического объекта. При поступлении материала в любой технологический объект, в последнем происходят изменения: повышается уровень содержимого, изменяются температура, концентрация и другие параметры. Только ориентируясь на результат ввода дозы, можно определить основные характеристики самого питателя и параметры процесса дозирования. На рисунке 2 показана реакция объекта, аппроксимированного инерционным звеном первого порядка на прямоугольный импульс подачи материала. Прямоугольными импульсы расхода можно считать в тех случаях, когда переходные процессы в питателе происходят значительно быстрее, чем в объекте подачи (управления).
— массовый расход сыпучего материала; — мгновенный массовый расход сыпучего материала; — масса единичной дозы; — длительность выдачи дозы; — релаксационный промежуток времени; — максимальная амплитуда изменения параметра технологического объекта в процессе загрузки.
Рисунок 2 — Реакция инерционного объекта первого порядка на входное воздействие в форме прямоугольных импульсов
Прямоугольными импульсы расхода можно считать в тех случаях, когда переходные процессы в питателе происходят значительно быстрее, чем в объекте подачи (управления). Объем единичной дозы в таком случае определяется как
(3) |
Масса единичной дозы материала, выданной из емкости питателя (при аппроксимации расхода прямоугольным импульсом):
, | (4) |
Максимальная амплитуда реакции на импульс для рассматриваемого объекта управления определяется как
. | (5) |
Основные затраты энергии при пневматическом управлении расходом идут на создание потока несущего воздуха. Показано [6], что для каждой конструкции ВПКП, в частности, для каждой величины Z (рисунок 1) существует величина расхода воздуха, обеспечивающая минимум удельных затрат на перенос массы твердой фазы (рисунок 3).
Рисунок 3 — Экстремальные зависимости удельного расхода воздуха
от абсолютного значения расхода
Управление расходом в частотно-импульсной форме позволяет выбрать амплитуду импульса именно на этом, минимальном значении расхода. Расчет системы в этом случае упрощается тем, что точки оптимума по расходу воздуха практически совпадают с удвоенной величиной скорости витания, которая, в свою очередь, расчетным путем определяется по параметрам частиц материала (см. ниже).
Частотно-импульсный режим подачи материала через ВПКП (с полным опорожнением емкости) выгоден еще и тем, что позволяет избежать проблем, связанных с необходимостью создания повышенного давления при повторном пуске питателя после его остановки (нет необходимости преодолевать сопротивление столба материала, осевшего в стволе).
ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ
Заданы:
– Максимальный средний (во времени) массовый расход материала , кг/с;
– параметры материала: плотность и насыпная плотность , кг/м3; средний эквивалентный диаметр частицы материала , м; угол естественного откоса , угл. град.;
– параметры несущего воздуха: температура , °С, плотность , кг/м3, динамическая вязкость , Па∙с;
– высота подачи Н, м;
– ограничение по величине истинной объемной концентрации твердой фазы в потоке м3/м3;
– максимально допустимая поперечная нагрузка на ствол , кг/(м2∙с);
– переходная характеристика (передаточная функция) объекта;
– максимально допустимая амплитуда изменения параметра объекта от воздействия поступившей дозы материала , отн. ед.
Определить:
– параметры импульса расхода (амплитуду , кг/с, и длительность , с);
– площадь проходного сечения транспортного ствола STP;
– объем камеры питателя V, м3;
– высоту Н ЗМП и диаметр d ЗМП загрузочного материалопровода;
– потребный расход несущего воздуха , кг/с;
– потери напора на транспортирование двухфазной смеси;
– выбрать воздуходувный агрегат, обеспечивающий полученные параметры двухфазного потока;
– выбрать принципиальную схему включения – отключения подачи воздуха (при необходимости);
– выбрать конкретное оборудование для управления подачей воздуха;
– определить суммарное минимально необходимое время релаксации ;
– выполнить проверку результата расчета по критерию . Графическая часть работы должна содержать схему питателя; график импульса расхода и реакции заданного объекта на единичный импульс расхода; чертеж камеры питателя, заполненной материалом (для расчета объема); схему для расчета потерь давления с указанием местных сопротивлений.
РАСЧЕТНАЯ ЧАСТЬ
СТАТИЧЕСКИЙ РАСЧЕТ ВПКП