Оценка технического состояния при помощи автомобильного осциллографа

Цель:

изучить порядок применения автомобильного осциллографа для оценки технического состояния систем зажигания, цилиндропоршневой группы (ЦПГ) и газораспределительного механизма (ГРМ).

Содержание работы

1. Изучение характеристик осциллографа.

2. Диагностика DIS систем зажигания.

3. Диагностика индивидуальных систем зажигания.

4. Диагностика ЦПГ и ГРМ.

Оборудование

1. Автомобильный осциллограф Autoscope III.

2. Контроллер широкополосного лямбда-зонда Lambda Meter.

3. Тестер систем подачи воздуха и выпуска отработанных газов двигателя SMC-110.

4. Токовые клещи (преобразователь тока) APPA-32.

Порядок выполнения работы

1. Изучение характеристик осциллографа

На монитор нанесены деления. Деления позволяют визуально оценить параметры сигнала. Деления, нанесённые по горизонтальной оси, позволяют измерять временные параметры. Деления, нанесённые по вертикальной оси, позволяют измерять напряжение. Графики, отображаемые на мониторе, называют осциллограммами. Самый простой осциллограф отображает только осциллограммы напряжений. Эта форма отображения показывает зависимость напряжения от времени. Путем просмотра осциллограмм напряжений можно выявить неисправности в электрических цепях в рабочем режиме без их разборки. По осциллограммам напряжений можно выявить неисправности датчиков, исполнительных механизмов и электропроводки в электронных системах автомобилей.

Нулевая линия.

Если к входу осциллографа не подключать никакого источника напряжения, то осциллограмма будет выглядеть как ровная горизонтальная линия. Такую линию называют "нулевая линия", так как она отображает уровень, соответствующий напряжению равному 0В на входе осциллографа. Если вход осциллографа подключить к источнику постоянного напряжения, например к автомобильной аккумуляторной батарее, то полученная осциллограмма так же будет иметь форму ровной горизонтальной линии, но её положение по вертикали на экране будет отличаться от положения нулевой линии. Разность между положениями полученной осциллограммы и нулевой линии прямо пропорционально значению напряжения. Большинство осциллограмм напряжений сигналов имеют форму отличную от ровной горизонтальной линии. Положение нулевой линии на экране осциллографа можно изменять по вертикали поднять выше или опустить ниже. Необходимость изменения положения нулевой линии (выше или ниже) зависит от формы исследуемого сигнала, а так же возникает в случае использования многоканального осциллографа.

Усиление.

График на экране осциллографа отображает зависимость значения напряжения от времени. Чем большая амплитуда исследуемого сигнала, тем большее на экране осциллографа вертикальное отклонение сигнала. В зависимости от амплитуды, для наглядности отображения сигнала выбирают подходящее усиление. Значение усиления измеряется в Вольтах на деление. Возможность изменения значения усиления позволяет на экране осциллографа отображать как сигналы с очень малой амплитудой напряжения, так и сигналы с очень большой амплитудой напряжения. Необходимое значение усиления зависит от амплитудных параметров исследуемого сигнала.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения усиления. Большее значение Вольт/ деление выбирают тогда, когда на экране нужно отобразить весь сигнал по амплитуде. Меньшее значение Вольт/деление выбирают тогда, когда нужно детально исследовать форму и амплитудные параметры отдельных участков сигнала. В таком случае на экране отображается только часть сигнала по амплитуде.

Развертка.

Осциллограф прорисовывает график напряжения слева направо, начиная с левой стороны экрана. Скорость, прорисовки графика называется развёрткой. Развёртка измеряется в Секундах на деление. Значение развёртки можно изменять с помощью переключателя время/деление. Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения развёртки.

Меньшее время/деление выбирают тогда, когда нужно детально исследовать форму и временные параметры отдельных участков сигнала. В таком случае на экране отображается более короткий по времени фрагмент сигнала. В случае если на экране необходимо отобразить больший по времени фрагмент осциллограммы, например для выявления отдельных импульсов с неправильной формой сигнала либо пропуски импульсов, выбирают большее время/деление.

Синхронизация.

Для удобного и наглядного отображения периодичных (циклично повторяющихся) сигналов применяется синхронизация. Синхронизация обеспечивает прорисовку отдельных импульсов, начиная всегда с одной и той же точки экрана, благодаря чему создаётся эффект неподвижного или относительно стабильного изображения. В случае выключенной синхронизации, осциллограф прорисовывает график напряжения слева направо, начиная с крайней левой стороны экрана до тех пор, пока экран не заполнится на всю ширину, после чего прорисовка снова начинается с крайней левой стороны экрана, что неудобно для отображения относительно быстрых периодичных сигналов. Для настройки синхронизации необходимо выбрать уровень синхронизации (значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму) и фронт сигнала (спадающее или возрастающее напряжение).

Аналоговые сигналы.

Значение напряжения большинства аналоговых сигналов изменяется во времени. Если изменения циклически повторяются, то такой сигнал называют периодичным, например сигнал управления форсункой. Если осциллограмма напряжения периодичного сигнала пересекает нулевую линию, то такой сигнал называют переменным. Если осциллограмма напряжения периодичного сигнала не пересекает нулевой линии, то такой сигнал называют постоянным.

Синусоидальные сигналы.

Самым простым примером переменного аналогового напряжения является синусоида. Такой сигнал характеризуется только двумя параметрами амплитуда и частота. Нулевая линия синусоидального переменного напряжения располагается ровно посередине сигнала. Необходимо отметить, что большинство сигналов переменного напряжения значительно отличаются от чистого синусоидального. В автомобильной электронике близкими к синусоидальному являются сигналы, сгенерированные магнитными датчиками положения зубчатых колес. Подобные сигналы генерируют некоторые датчики скорости вращения коленчатого вала, распределительного вала, скорости вращения колёс и др.

Цифровые сигналы.

Цифровые сигналы от аналоговых отличаются наличием только двух уровней напряжения "высокий"/"низкий", "включено"/"выключено", "1"/"0". Такие уровни напряжений цифрового сигнала называются "логическими уровнями". В большинстве случаев, логические уровни цифрового сигнала имеют точные значения напряжения, например +5 Вольт и 0 Вольт. Цифровые сигналы генерируются ключами (выключателями). Роль ключей выполняют транзисторы, переключающиеся между состояниями "открыт"/"закрыт". Иногда цифровые сигналы генерируются механическими ключами механическими выключателями, переключателями, электромеханическими реле. Примерами цифровых сигналов автомобильной электронике могут служить датчик Холла, датчики крайних положений дроссельной заслонки, активные датчики положения/частоты вращения коленчатого/распределительного вала. Но преимущественно, цифровые сигналы используются в вычислительной технике, в том числе и в цифровых блоках управления электронными системами автомобилей.

Частота.

Частота - это количество циклов периодичного сигнала, повторяющееся за определённый период времени. Если за такой период времени принять одну секунду, то количество циклов периодичного сигнала повторившееся за этот период времени называют Герц (Гц). В автомобильной электронике количество оборотов двигателя принято рассчитывать за период времени равный одной минуте (об/мин). По осциллограмме напряжения периодичного сигнала можно легко измерить частоту следования импульсов. Для этого необходимо измерить длительность полного цикла сигнала. Далее полученное значение временного промежутка можно пересчитать в частоту воспользовавшись соответствующей формулой.

Длительность импульса.

Длительность импульса это временной промежуток, в течение которого сигнал находится в активном состоянии. Активное состояние это уровень напряжения, который включает исполнительный механизм (приводит в действие). В зависимости от схемы включения исполнительного механизма, активное состояние может иметь различные уровни напряжения, например +5 Вольт, +12 Вольт. Напряжение активного состояния сигнала управления электромагнитной форсункой в большинстве систем управления двигателем 0 Вольт теоретически, а практически может колебаться в диапазоне 0…+2,5 Вольт и более. Для приведённого выше сигнала, длительность импульса открытия форсунки составляет 4,4 деления на экране осциллографа по горизонтали, что при развёртке 1 милли Секунда/деление соответствует 4,4 милли Секунды.

Скважность.

Скважность – это процент времени от периода повторения, когда сигнал находится в активном состоянии. Скважность один из параметров сигналов ШИМ (Широтно-Импульсная Модуляция). Сигналы ШИМ применяются для управления некоторыми исполнительными механизмами. Например, в некоторых системах управления двигателем сигналом ШИМ приводится в действие электромагнитный клапан холостого хода. Кроме того, сигнала ШИМ генерируют некоторые датчики, преобразовывая величину измеряемого физического параметра в скважность.

ЭДС самоиндукции

ЭДС (Электро - Движущая Сила) самоиндукции – это напряжение, возникающее вследствие изменения значения величины магнитного поля и/или его направления вокруг электрического проводника. В случае высокой скорости изменения величины магнитного поля внутри соленоида (обмотка электромагнитного реле, электромагнитной форсунки, катушки зажигания, электромагнитного датчика частоты вращения) напряжение ЭДС самоиндукции может достигать десятков/тысяч Вольт. Величина напряжения ЭДС самоиндукции зависит в основном от индуктивности обмотки и скорости изменения величины магнитного поля. Для электромагнитных исполнительных механизмов, величина магнитного поля наиболее быстро изменяется при его разрушении, то есть при быстром отключении напряжения питания. В некоторых случаях, эффект ЭДС самоиндукции нежелателен, и применяются меры для его уменьшения/устранения. Но некоторые электрические цепи спроектированы так, чтобы получить максимальный всплеск ЭДС самоиндукции, например, система зажигания бензинового двигателя. Некоторые системы зажигания при напряжении питания 12 Вольт способны развивать напряжение ЭДС самоиндукции до 4050 тысяч Вольт.

2. Диагностика DIS систем зажигания

DIS система зажигания (Double Ignition System) устанавливалась на автомобилях производства в основном 90-х годов. Отличается применением катушек зажигания с двумя высоковольтными выводами. В большинстве случаев DIS катушки объединены в один блок. Передачу тока высокого напряжения от катушек к свечам зажигания, обеспечивают высоковольтные провода. В DIS системе зажигания искрообразование происходит одновременно в двух цилиндрах. Каждая DIS катушка обслуживает по два цилиндра, работающие с взаимным опозданием фаз газораспределения на 360° по положению коленчатого вала. В одном из цилиндров такой пары, искрообразование происходит в конце такта сжатия (рабочая искра), а в другом – в конце такта выпуска отработавших газов (холостая искра). Ток высокого напряжения к свечам зажигания такой пары цилиндров подводится от двух противоположных выводов вторичной обмотки одной и той же катушки зажигания, вследствие чего полярность импульсов высокого напряжения на свечах зажигания этих цилиндров противоположна. В связи с различной полярностью импульсов высокого напряжения в DIS системах зажигания, подключать высоковольтные датчики при проведении диагностики необходимо с учётом полярности сигнала.

Наши рекомендации