Секреция белков у прокариот: Sec-апарат, системы секреции 1-4 типов

ОГЛАВЛЕНИЕ

Введение.............................................................................................................. 3

1. Секреция белков у прокариот: Sec-апарат, системы секреции 1-4 типов..... 4

2. Распределение белков по компартментам клетки эукариот.......................... 8

2.1Контртрасляционная транслокация белков в полость эндоплазматического ретикулума.......................................................................................................... 8

2.2 SPR-частица и ее рецептор................................................................... 9

2.3 Модификация белков в полость ЭПР................................................. 10

3. Транспорт белков в митохондрии и хлоропласты, контроль локализации белков внутри этих органелл........................................................................................ 11

3.1 Транспорт белков через ядерные поры............................................. 14

Заключение........................................................................................................ 16

Список использованных источников................................................................ 17

ВВЕДЕНИЕ

Процесс секреции белков является важным аспектом жизнедеятельности бактерий, поскольку значительное количество белков бактериальной клетки локализованы вне цитоплазмы. Способность к секреции белков является важнейшей для вирулентных бактерий, поскольку в процессе инфекции многие белковые продукты должны располагаться на внешней поверхности бактериальной клетки, либо секретироваться во внешнюю среду. Кроме того, секреция белков имеет важнейшее значение для биотехнологии, поскольку очистка белков из культуральной среды простого состава значительно проще, чем из лизатов, которые представляют собой сложные смеси различных веществ. В связи с этим изучение процесса белковой секреции является весьма актуальной проблемой. Результатом проведенных ранее исследований стало обнаружение нескольких путей экспорта белка. Впоследствии они были разделены на группы, внутри которых процесс секреции идентичен или очень схож. Сейчас выделяют пять основных типов секреции белков. Одним из них является система секреции первого типа. Посредством этой системы бактериальные клетки экспортируют широкий круг различных субстратов, включающий в себя ферменты, токсины, полисахариды, антибиотики и др. соединения. Несмотря на относительную простоту устройства этого аппарата секреции, остается еще достаточное количество невыясненных вопросов в этой области. Недостаточная изученность строения и функционирования этой системы секреции, а также неоспоримая важность секретируемых ею белков являются причиной, по которой изучение этой темы является весьма актуальным.




Sec система.

В отличие от секреции у эукариот, секреция через бактериальную плазматическую мембрану протекает в основном посттрансляционно. Работу Sec системы можно разделить на три стадии:

- направление белка на транспорт

- собственно транслокация белка через мембрану

- освобождение транспортированного белка на периплазматической стороне мембраны

На первой стадии пребелки направляются к точкам секреции в цитоплазматической мембране (местам, где собран транслокационный комплекс). На второй стадии полипептидная цепочка пересекает липидный бислой, скорее всего через транслоказу. На третьей стадии транслоцированный полипептид

Как минимум 10 белков необходимы для работы Sec системы (Рис. 13.2). Первая стадия реакции требует присутствия специфичного для секреции шаперона SecB. Этото шаперон является тетрамером, опознает белки, содержащие сигнальный пептид, и связывается с ними, выполняя фактически функцию молекулярного шаперона, связываясь с

областями пресекреторных белков, не принявшими свою окончательную конформацию и поддерживая их в компетентном для транслокации состоянии. Второй функцией SecB является "доставка" предшественников белков к SecA субъединице мембранной транслоказы. В некоторых случаях могут привлекаться гомеостатические шапероны GroEL и DnaK.

Вторая стадия реакции катализируется сложным белковым комплексом, расположенным в цитоплазматической мембране - транслоказой. Транслоказа содержит пронизывающий мембрану канал, состоящий из субъединиц трех белков, SecY, SecE и SecG. Эти три белка являются интегральными мембранными белками, составляющими структурную основу транслоказы - каркас или раму. SecY -интегральный мембранный белок (10 НТМ - стр-ра подобная мембр транспортерам, напр, LacY). SecE имеет три трансмембранных сегмента, SecD и SecF - шесть. А «мотором» транслокационный машины служит АТФаза SecA. Этот белок уникален для бактерий - эукариоты используют другую транслокационную АТФазу. SecA - большая вытянутая димерная молекула, содержащая два домена -амино-концевой АТФазный и карбокси-конец, необходимый для димеризации. Карбокси-концевой домен позволяет SecA связаться с SecYEG, что создает функциональную основу транслоказы. Дополнительные субъединицы транслоказы SecD и SecF оптимизируют секреторную реакцию. Источником энергии для секреции служит АТФ и протондвижущая сила (ускоряет транслокацию).

Секреция белков у прокариот: Sec-апарат, системы секреции 1-4 типов - student2.ru

SPR-частица и ее рецептор

Частица, распознающая сигнал, связывается с сигнальным пептидом, как только он "сходит" с рибосомы. Это приводит к временной остановке синтеза белка. Возникшая пауза в трансляции , вероятно, дает возможность рибосоме связаться с мембраной ЭР до того, как синтез полипептидной цепи будет завершен. Благодаря этому ненужного высвобождения белка в цитозоль не происходит.

SRP плотно захватывает рибосому, присоединяясь и к сигнальному пептиду (как только он появляется на большой субъединице рибосомы), и к рибосомному участку связывания аминоацил-тРНК . В результате трансляция останавливается, поскольку блокируется связывание следующей аминоацил-тРНК с рибосомой ( рис. 8-43 ).

Пауза в трансляции длится до тех пор, пока захватившая рибосому частица не свяжется с SRP-рецептором , находящемся на цитоплазматической стороне мембраны шероховатого ЭР . Он взаимодействует с SRP-связанными рибосомами таким образом, что частица меняет свое положение, и трансляция возобновляется. Одновременно рибосома связывается с мембраной ЭР, и растущая на ней полипептидная цепь переносится к системе транслокации в мембране. Эта система изучена плохо, известно только, что она включает белок-рецептор второго сигнального пептида, отличающийся от SRP. По- видимому, ее роль заключается в связывании рибосомы, на которой синтезировался сигнальный пептид ЭР, с мембраной ЭР; участвует она и в последующем переносе белка через мембрану.

ЗАКЛЮЧЕНИЕ

Посредством системы секреции первого типа секретируется широкий круг субстратов, включающий в себя ряд ферментов, токсинов, антибиотиков, и других биологически активных соединений. Эта система секреции характерна как для прокариотических, так и для эукариотических клеток. Во всех случаях она состоит из трех компонентов белковой природы: ABC-транспортера, который является АТФ-азой, осуществляющей энергозависимые стадии транслокации; белка, формирующего периплазматический канал, соединяющий ABC-транспортер с третьим компонентом системы – белком-швейцаром, образующим секреторный канал во внешней мембране. Система секреции первого типа является Sec-независимой и осуществляет секрецию субстрата в одну стадию из цитоплазмы непосредственно во внеклеточное пространство без присутствия каких-либо периплазматических посредников. Сигналом к секреции по этому типу является последовательность из 60 аминокислотных остатков, находящаяся на карбокси-конце полипептида. Выявлены также гибридные системы секреции первого типа, состоящие из компонентов присущих разным системам этого типа. Несмотря на относительно простое устройство данной системы секреции в сравнении с другими аппаратами секреции, существует довольно большое количество неясных и спорных вопросов в этой области. В частности, недостаточно изучена последовательность событий в процессе секреции субстратов, а также видовая специфичность строения самой системы.

ОГЛАВЛЕНИЕ

Введение.............................................................................................................. 3

1. Секреция белков у прокариот: Sec-апарат, системы секреции 1-4 типов..... 4

2. Распределение белков по компартментам клетки эукариот.......................... 8

2.1Контртрасляционная транслокация белков в полость эндоплазматического ретикулума.......................................................................................................... 8

2.2 SPR-частица и ее рецептор................................................................... 9

2.3 Модификация белков в полость ЭПР................................................. 10

3. Транспорт белков в митохондрии и хлоропласты, контроль локализации белков внутри этих органелл........................................................................................ 11

3.1 Транспорт белков через ядерные поры............................................. 14

Заключение........................................................................................................ 16

Список использованных источников................................................................ 17

ВВЕДЕНИЕ

Процесс секреции белков является важным аспектом жизнедеятельности бактерий, поскольку значительное количество белков бактериальной клетки локализованы вне цитоплазмы. Способность к секреции белков является важнейшей для вирулентных бактерий, поскольку в процессе инфекции многие белковые продукты должны располагаться на внешней поверхности бактериальной клетки, либо секретироваться во внешнюю среду. Кроме того, секреция белков имеет важнейшее значение для биотехнологии, поскольку очистка белков из культуральной среды простого состава значительно проще, чем из лизатов, которые представляют собой сложные смеси различных веществ. В связи с этим изучение процесса белковой секреции является весьма актуальной проблемой. Результатом проведенных ранее исследований стало обнаружение нескольких путей экспорта белка. Впоследствии они были разделены на группы, внутри которых процесс секреции идентичен или очень схож. Сейчас выделяют пять основных типов секреции белков. Одним из них является система секреции первого типа. Посредством этой системы бактериальные клетки экспортируют широкий круг различных субстратов, включающий в себя ферменты, токсины, полисахариды, антибиотики и др. соединения. Несмотря на относительную простоту устройства этого аппарата секреции, остается еще достаточное количество невыясненных вопросов в этой области. Недостаточная изученность строения и функционирования этой системы секреции, а также неоспоримая важность секретируемых ею белков являются причиной, по которой изучение этой темы является весьма актуальным.

Секреция белков у прокариот: Sec-апарат, системы секреции 1-4 типов

Процесс секреции белков является важным аспектом жизнедеятельности бактерий, поскольку значительное количество белков бактериальной клетки локализованы вне цитоплазмы. Способность к секреции белков является важнейшей для вирулентных бактерий, поскольку в процессе инфекции многие белковые продукты должны располагаться на внешней поверхности бактериальной клетки, либо секретироваться во внешнюю среду. Кроме того, секреция белков имеет важнейшее значение для биотехнологии, поскольку очистка белков из культуральной среды простого состава значительно проще, чем из лизатов, которые представляют собой сложные смеси различных веществ. В связи с этим изучение процесса белковой секреции является весьма актуальной проблемой. Результатом проведенных ранее исследований стало обнаружение нескольких путей экспорта белка. Впоследствии они были разделены на группы, внутри которых процесс секреции идентичен или очень схож. Сейчас выделяют пять основных типов секреции белков. Одним из них является система секреции первого типа. Посредством этой системы бактериальные клетки экспортируют широкий круг различных субстратов, включающий в себя ферменты, токсины, полисахариды, антибиотики и др. соединения. Несмотря на относительную простоту устройства этого аппарата секреции, остается еще достаточное количество невыясненных вопросов в этой области. Недостаточная изученность строения и функционирования этой системы секреции, а также неоспоримая важность секретируемых ею белков являются причиной, по которой изучение этой темы является весьма актуальным.

Секреция присутствует не только у эукариот, она также есть у бактерий и архей. Кассетные АТФ-связывающие транспортеры (АВС-система) характерны для всех трёх доменовживых организмов. Сек-система — это другая консервативная секреторная система, которая гомологична каналу-транслокону в эндоплазматическом ретикулуме эукариот. Она состоит из комплекса Сек-61 у дрожжей и комплекса Сек Y-E-G у бактерий.

Sec система.

В отличие от секреции у эукариот, секреция через бактериальную плазматическую мембрану протекает в основном посттрансляционно. Работу Sec системы можно разделить на три стадии:

- направление белка на транспорт

- собственно транслокация белка через мембрану

- освобождение транспортированного белка на периплазматической стороне мембраны

На первой стадии пребелки направляются к точкам секреции в цитоплазматической мембране (местам, где собран транслокационный комплекс). На второй стадии полипептидная цепочка пересекает липидный бислой, скорее всего через транслоказу. На третьей стадии транслоцированный полипептид

Как минимум 10 белков необходимы для работы Sec системы (Рис. 13.2). Первая стадия реакции требует присутствия специфичного для секреции шаперона SecB. Этото шаперон является тетрамером, опознает белки, содержащие сигнальный пептид, и связывается с ними, выполняя фактически функцию молекулярного шаперона, связываясь с

областями пресекреторных белков, не принявшими свою окончательную конформацию и поддерживая их в компетентном для транслокации состоянии. Второй функцией SecB является "доставка" предшественников белков к SecA субъединице мембранной транслоказы. В некоторых случаях могут привлекаться гомеостатические шапероны GroEL и DnaK.

Вторая стадия реакции катализируется сложным белковым комплексом, расположенным в цитоплазматической мембране - транслоказой. Транслоказа содержит пронизывающий мембрану канал, состоящий из субъединиц трех белков, SecY, SecE и SecG. Эти три белка являются интегральными мембранными белками, составляющими структурную основу транслоказы - каркас или раму. SecY -интегральный мембранный белок (10 НТМ - стр-ра подобная мембр транспортерам, напр, LacY). SecE имеет три трансмембранных сегмента, SecD и SecF - шесть. А «мотором» транслокационный машины служит АТФаза SecA. Этот белок уникален для бактерий - эукариоты используют другую транслокационную АТФазу. SecA - большая вытянутая димерная молекула, содержащая два домена -амино-концевой АТФазный и карбокси-конец, необходимый для димеризации. Карбокси-концевой домен позволяет SecA связаться с SecYEG, что создает функциональную основу транслоказы. Дополнительные субъединицы транслоказы SecD и SecF оптимизируют секреторную реакцию. Источником энергии для секреции служит АТФ и протондвижущая сила (ускоряет транслокацию).

Секреция белков у прокариот: Sec-апарат, системы секреции 1-4 типов - student2.ru

Наши рекомендации