Глава 5. Сумасшествие вокруг машин
Из этой главы вы узнаете…
Почему наш мир, столь обеспокоенный вопросами экологии, любит старый загрязняющий атмосферу бензин.
Сколько вы можете проехать на чайной ложке бензина.
Почему автомашина использует в 250 раз больше воздуха, чем велосипед.
Как сила, равная силе укуса аллигатора, предотвращает скольжение в момент, когда вы совершаете поворот.
На нашей планете 1 млрд автомобилей[50]. Попробуйте их сосчитать! Поставьте их один на другой, и у вас получится гора в 170 000 раз выше Эвереста. Этого достаточно, чтобы достичь Луны четыре раза. Выстройте эти машины бампер к бамперу – и они покроют расстояние с запада на восток США 1200 раз. Миллиард (тысяча миллионов) – величина, которую трудно себе вообразить. Подскажу: население Земли чуть больше 7 млрд человек; в день оно потребляет 2 млрд чашек кофе. В мире около 6 млрд мобильных телефонов[51]и от 1 до 2 млрд овец[52]. Если вы можете вообразить овцу за рулем «Ягуара», болтающую по мобильному телефону, который зажат у нее между мордой и плечом, то вы наверняка способны представить себе миллиард автомобилей.
Мне интереснее не то, что в мире так много автомашин, а почему их так много. Почему всего за один век автомобиль стал одним из самых успешных изобретений человечества? Неудивительно, что ответ связан с наукой.
Что же хорошего в машинах?
Автомобиль – химическая лаборатория на колесах. Звучит скучновато, но это во многом и объясняет его популярность. Уберите кожаные сиденья, сверкающий хром, покраску, которая так и подгоняет машину ехать быстрее, и все остальные примочки – и останется несколько жестянок, которые называются цилиндрами, где бензин взрывается, высвобождая энергию. Машины создаются вокруг моторов, и эти моторы (полное название – двигатели внутреннего сгорания) сжигают бензин в смеси с кислородом, чтобы высвободить заключенную в топливе энергию. Мы часто представляем себе горение как огонь, но на самом деле это химическая реакция между различными видами топлива и кислородом, которая случайно производит тепло и пламя в качестве побочных продуктов. Простая наука, связанная в нашем сознании с машиной, настолько приземленная, что мы подчас даже не задумываемся о ней: залей бензин в бак, поверни ключ в замке зажигания – и вперед! Но если поразмыслить об автомобиле серьезнее, то можно понять, насколько он удивителен.
Предположим, обычный городской семейный седан потребляет примерно 7 л бензина на 100 км. Это значит, что чайной ложки топлива (около 0,004 л) достаточно, чтобы сдвинуть автомобиль на 60 м, примерно на 15 его корпусов. Представьте себе, как трудно тронуть машину с места, и я уверен, что вы согласитесь: это удивительно. Бензин – замечательное вместилище энергии: это второе по энергоемкости вещество на земле, уступающее по этому показателю только урану (атомная энергия). И это гораздо лучше, чем любая другая причина – включая свободу передвижения, независимость и социальный статус, которые дает автомобиль, – объясняет его популярность.
Дышите глубже
Автолюбители никогда не отправляются в дальний путь, не бросив взгляд на указатель бензина. Закон сохранения энергии подсказывает нам, что машина не уедет далеко без энергии, «упакованной» в топливо. Гораздо менее очевидно, что машины нуждаются в воздухе, чтобы дышать. Совсем как люди. Процесс сгорания топлива в цилиндрах – химическая реакция между углеводородами (молекулами, в состав которых входят углерод и водород) в бензине и кислородом, содержащимся в воздухе. Если вокруг вас нет воздуха, вы никуда не уедете. Сколько же воздуха нужно машине? Спортивный автомобиль потребляет в минуту порядка 6000 л воздуха, что в 250 раз больше, чем за то же время использует велосипедист[53]. Так что, если вы проехали на своей машине без остановки около восьми часов, она всосала в себя столько воздуха, сколько содержится в олимпийском плавательном бассейне.
Наверняка вам кажется, что воздуха у нас везде предостаточно. Это действительно так. Теоретически единственным видом двигателей, которым может не хватать воздуха, являются ракетные. За очень короткий промежуток времени они выходят из атмосферы Земли в безвоздушное пространство, где нет кислорода, и им приходится везти с собой собственные «запасы» воздуха (окислители) и топливо в гигантских баках.
Есть ли на Земле места, где машина может оказаться без необходимого ей воздуха, как она оказывается без топлива, когда оно кончается? В принципе так бывает на большой высоте, где в воздухе относительно мало кислорода. Это может отрицательно повлиять на работу автомобильного двигателя. Всё очень просто: если мы имеем дело с химической реакцией между веществом А (топливо) и веществом Б (кислород), в ходе которой производится энергия (В), при недостатке реагента Б мы будем иметь и меньше продукта этой реакции В, если каким-то образом эту ситуацию не компенсируем. И действительно, ряд автомобильных компаний производят специальные типы двигателей для использования в высокогорной местности[54].
Наш организм тоже не очень любит высокогорье. Когда спортсмен бежит марафонскую дистанцию на большой высоте, в его легкие попадает меньше кислорода. А для дыхания этот важнейший газ так же нужен как и цилиндры двигателя автомобиля. Стайерам труднее соревноваться на высокогорье, потому что им необходимо много кислорода.
Интересно, что к спринтерам это не относится. Поскольку дистанция у них намного короче, они не вдыхают так много воздуха. И даже несмотря на меньшее содержание в нем кислорода, для них важнее то, что более разреженный воздух создает меньшее сопротивление, в результате чего на высоте они зачастую бегут быстрее. Этим, в частности, можно объяснить то, что в ходе Олимпиады в Мехико (расположенном на высоте 2250 м) спортсменам удалось поставить целый ряд выдающихся мировых рекордов[55].
А что же в машинах плохого?
Ездить на машине – почти то же самое, что быть человеком-снарядом. Автомобиль может нести вас над землей с огромной скоростью, преодолевая большие расстояния на одной заправке. Если бак вашей машины вмещает 70 л, а расход топлива составляет 7 л на 100 км, на одном баке вы можете переместиться на 1000 км. Остановившись для заправки всего четыре раза, вы можете пересечь США от Нью-Йорка до Лос-Анджелеса.
Звучит впечатляюще, но на самом деле не так уж автомобиль и замечателен, как кажется. Конечно, если вы задались целью пересечь Америку, то он гораздо удобнее велосипеда. Во всяком случае, тогда, когда вы не готовы прикладывать сверхчеловеческие усилия. Здесь автомобиль, безусловно, самое быстрое и удобное средство передвижения, если не брать в расчет самолет или поезд.
Но представьте себе такую картину: вы хотите забраться на Эверест, и у вас есть три варианта – пешком, на велосипеде или на машине. И здесь сразу же приходит мысль: «Неужели мне необходимо тащить наверх весь этот металлолом?» Нести вверх велосипед – тоже удовольствие сомнительное, но если вы едете в гору на машине, то поднимаете не только свой вес, но и массу всего автомобиля (около 1,5 т). В этом и заключается его недостаток. Куда бы вы ни поехали на машине, вы чувствуете себя узником, к ноге которого цепью прикован металлический шар размером 4–5 м, весящий в 20 раз больше, чем вы сами. Если вы все же умудритесь добраться до вершины горы, то будете понимать, что 95 % потребленной энергии было истрачено впустую на подъем самой машины. И только 5 % тратятся на полезную работу, которая для вас важна: перемещение вашего тела на вершину. Именно поэтому автомобили пожирают столько бензина и потребляют столько воздуха. То, что я сказал о подъеме в гору, применимо к поездке на автомашине по любой поверхности. Куда бы вы на машине ни отправились, вы тащите с собой целую гору металла и тратите на это ценную энергию. И совсем неслучайно, что спортивный суперкар Ariel Atom, одна из самых быстрых машин в мире, является в то же время одной из самых легких. Она весит около 500 кг, от четверти до трети массы обычного малолитражного автомобиля[56].
▲ Почему автомобили такие тяжелые? Три четверти веса среднего автомобиля составляют сталь, железо и алюминий. Стальной корпус весит треть автомобиля, железный двигатель – около 15 % [57].
Одним словом, во всех автомашинах, работающих на углеводородах, есть один громадный недостаток: они слишком тяжелы. И этот вывод мы можем сделать сразу, еще не разбирая подробно других причин их неэффективности. Фундаментальная проблема автомобилей заключается в том, что они используют только 15 % энергии, заключенной в бензине. Остальное теряется разными способами: потери производимого тепла в цилиндрах, потери на трение в механической части, даже на звук, который издает двигатель, на работу электросхемы и т. д. Если бы коэффициент полезного действия автомобиля составлял 100 %, а энергия жидкого топлива полностью преобразовывалась в кинетическую, наши машины покрывали бы на том же количестве топлива в 5–10 раз большее расстояние. Это значит, что одной чайной ложки бензина нам хватало бы на полкилометра, а то и больше.
▲ На что автомобиль тратит энергию? Машины ужасно неэффективны. При поездке по городу только примерно 15 % энергии топлива, которое вы купили, генерирует полезную мощность для колес. Всё остальное – потери двигателя (например, потеря тепла в радиаторе), «паразитические» потери (ими мы «обязаны» генератору, который отнимает энергию для производства электричества) и потери трансмиссии, которая сообщает энергию колесам. По материалам Министерства энергетики США, Управления по транспортному сообщению и качеству воздуха [58].
Чем больше людей в машине, тем выше ее полезная нагрузка по отношению к собственному весу и тем больше эффективность ее использования. Именно поэтому грузовики, автобусы и дизель-поезда достаточно эффективны, хотя и используют тяжелые дизельные двигатели. Но какой бы эффективной вы ни делали машину или другой вид транспорта с двигателем внутреннего сгорания, принцип их работы остается одним: сжигание топлива и выброс в атмосферу загрязняющих веществ от сажи до углекислого газа, становящихся причиной глобального потепления. Как же создать более совершенное, чистое и эффективное средство передвижения типа машины? Что говорит наука?
Лучше, чем бензин?
Хитроумные изобретатели в разное время предлагали самые разные типы двигателей для автомашин. До того, как появились бензиновые двигатели, существовали двигатели паровые. Но они оказались очень неэффективными и непригодными для использования в автомобилях. Кроме того, уголь тяжел, грязен и выбрасывает в атмосферу огромное количество загрязняющих веществ. Дизельные двигатели, которые представляют собой промышленный вариант бензиновых, тоже достаточно стары (они появились в конце XIX века) и также используют эффект внутреннего сгорания в цилиндрах. Многие думают, что электрические двигатели для автомобилей появились относительно недавно, но это не так. Это произошло задолго до расцвета империи Генри Форда, также в конце XIX века. Фердинанд Порше, более известный как создатель линейки современных спортивных автомобилей, стал пионером гибридного автомобилестроения, создав машину с электрическим двигателем в 1900 году[59].
Набросать на бумаге рисунок нового обтекаемого электромобиля легко. Гораздо труднее создать надежную конструкцию, которая позволит передвигаться как можно дальше и как можно быстрее. Возможно, вы считаете, что после 100 лет прогресса можно было бы создать электромобиль, более эффективный, чем машина с бензиновым двигателем. Но здесь есть фундаментальная проблема: современные батареи и аккумуляторы по уровню энергоемкости не идут ни в какое сравнение с жидкими энергоносителями: бензином, керосином (топливо для самолетов) и этилом (топливо для ракет). Даже кусок дерева или пакет сахарного песка содержат больше энергии, чем эквивалентные по массе перезаряжаемая батарея или аккумулятор. И если автомашину с бензиновым двигателем вы можете «перезарядить» за пару минут, залив ее бак бензином, то тихая перезарядка электрических аккумуляторов может требовать многих часов[60].
Защитники окружающей среды любят рисовать ужасные картины всемирного заговора, направленного нефтяным и автомобильным лобби против электромобилей, которые до сих пор ожидают своей очереди на обочине технического прогресса. А тем временем грязные и дорогие пожиратели углеводородов продолжают загрязнять атмосферу планеты. Правда гораздо проще: бензин является и в ближайшей перспективе останется гораздо более эффективным энергоносителем, чем электрические батареи и аккумуляторы. Наука, а не политика объясняет, почему большинство из нас по-прежнему ездит на автомобилях с бензиновыми двигателями, а не на электромобилях.
▲ Почему мы (пока) не ездим на электромобилях. Если измерять содержание энергии в килограмме энергоносителей, то электрические батареи могут запасти лишь очень небольшую часть той энергии, которая заключена в жидких углеводородах, таких как бензин и дизель. Водород заметно опережает по энергоемкости все остальные носители. Но это очень летучий и крайне пожароопасный газ, поэтому его трудно эффективно транспортировать и хранить [61].
Наше электрическое будущее?
Мы не обязательно будем ездить на бензиновых двигателях завтра. Мы не можем уверенно сказать, когда истощатся природные запасы нефти, когда она будет такой дорогой, что альтернативные источники энергии станут более привлекательными. Но этот день когда-нибудь придет. Сотни миллионов лет потребовались нашей планете на то, чтобы превратить в нефть сгнившие деревья и растения, а также морских животных. И всего один век понадобился человечеству для того, чтобы использовать почти все ее запасы. Нефть образуется каждый день. Так что, если мы остановим эксплуатацию ее месторождений и вернемся к ним через миллион лет, мы найдем множество новых естественных подземных хранилищ, из которых сможем черпать этот энергоресурс. Нравится вам это или нет, но факт остается фактом: сегодня будущее – за накопителями электрической энергии, хотя пока они не так энергоемки и удобны, как жидкие углеводороды.
Объемные и массивные батареи, возможно, и являются серьезным недостатком электромобилей, но эти блестящие и бесшумные транспортные средства имеют и много достоинств. Теоретически они значительно легче обычных автомобилей, потому что лишены тяжелого, чудовищного бензинового или дизельного двигателя, цилиндров с бегающими в них поршнями и стирающей металл коробки передач. На практике, однако, обнаруживается неприятный нюанс: груз тяжелых аккумуляторов. Но даже при этом электромобили легче работают, что делает их весьма эффективными.
Воспроизводство энергии
Одним из важнейших факторов, которые делают КПД автомашин на жидких углеводородах столь низким, оказывается наш обычный городской стиль езды, который предполагает частые остановки и разгоны. Как мы видели в главе 2, любая работа требует энергии. Если вы когда-либо толкали сломавшуюся машину, то должны знать, как мучительно всего лишь преодолеть ее инерцию (состояние покоя концентрированной массы) и сдвинуть ее с места. Если ваша машина весит 1,5 т и едет по городу со скоростью 65 км/ч, то она обладает солидной кинетической энергией. Произведите необходимые вычисления, и вы поймете, что эта энергия равна примерно 240 кДж и ее (согласно расчетам в той же главе) достаточно, чтобы подняться пешком на Эмпайр-стейт-билдинг.
Возможно, эти числа вас не впечатлили, но здесь есть загвоздка. Каждый раз, когда вы «бьете» по тормозам, чтобы не задавить ребенка, бросившегося за мячом, или кота, который презирает правила дорожного движения, эти 240 кДж энергии растворяются в воздухе. Когда тормозные колодки захватывают тормозные диски и машина замирает, вся эта энергия превращается в визг резины и легкий дымок. На гонках серии «Формула-1» резина спортивных машин может разогреваться до 750 °C – температуры, достаточной для того, чтобы колеса загорелись, если бы они были сделаны из дерева[62]. Когда же вы давите на педаль газа, чтобы набрать скорость после полной остановки, двигатель снова должен превратить большее количество бензина в энергию. Чудовищно расточительный цикл повторяется вновь и вновь.
Электромобили имеют здесь большое преимущество, поскольку приводятся в движение электродвигателями. В своей простейшей схеме такие двигатели имеют ротор – вращающуюся часть, которая движется внутри неподвижной, статора (иногда в качестве такового используются магниты). При включении двигателя в сеть медная обмотка ротора генерирует переменное магнитное поле, которое отталкивается от магнитного поля статора. Ротор вращается внутри статора, и мы можем использовать силу его крутящего момента в самых разных устройствах и машинах: от домашнего пылесоса до скоростного электропоезда. Замечательное свойство электродвигателей состоит в том, что вы можете «запустить» процесс и в обратном направлении. Если вы быстро прокрутите ротор электрического двигателя рукой, то добьетесь того, что электромагнитное поле, индуцируемое обмоткой, поменяет направление (таков принцип работы асинхронного двигателя). Так электродвигатель станет генератором электрической энергии. Теоретически вы можете использовать любую бытовую электротехнику, чтобы, вращая роторы двигателей, «накачивать» электроэнергию в сеть. Если вы при этом выдернете штепсель из сети, то по идее на нем должно будет появиться электромагнитное поле. Разумеется, на практике подобная схема не сработает для пылесоса. А вот для электромобиля – сработает.
Электромобили используют свои двигатели очень эффективно. Когда вы едете на машине вперед, ее толкает электрический ток, поступающий из аккумуляторов в двигатели. При нажатии на тормоз вы прекращаете подачу тока в моторы, но колеса машины по инерции продолжают вращаться. В этот момент от привода вращаются и двигатели, и они начинают «закачивать» электроэнергию в батареи. В ходе этого же процесса электромобиль приостанавливает свой ход. Таким образом, вместо того чтобы терять энергию при торможении, он использует по крайней мере какую-то часть кинетической энергии для подпитки своих аккумуляторов. В технике это называется регенеративным (рекуперативным) торможением . Оно повышает КПД обычного электромобиля на 10 % (между прочим, электропоезда таким образом могут повышать свою эффективность на 15 %, что равносильно беззатратной езде каждого седьмого электрического поезда)[63].