Получение, структура и свойства неорганических мембран

В последние годы быстрыми темпами развиваются работы по созданию и промышленному освоению неорганических мембран. Уже в настоящее время до 20 % мембран, используемых для микро- и ультрафильтрации, являются неорганическими.

Неорганические мембраны в зависимости от химического состава материалов, из которых их формируют, разделяют на керамические, стеклянные, графитовые, металлические и композиционные (керметы, углеграфитовые, керамика на графите и т. п.).

По сравнению с полимерными неорганические мембраны обладают рядом преимуществ, позволяющими использовать их в специфических технологических условиях и, следовательно, они не заменяют, а, прежде всего, дополняют полимерные мембраны.

Наиболее важными достоинствами неорганических мембран являются:

1. Возможность разделения смесей и растворов при высоких температурах. При высоких температурах снижается вязкость разделяемой системы и, следовательно, увеличивается удельная производительность мембраны. Повышенные температуры позволяют снять ряд проблем, возникающих при очистке и регенерации мембран. Мембраны могут промываться горячими растворителями, в том числе концентрированными кислотами, щелочами и др. В случае необходимости может производиться продувка неорганических мембран газом при высоких температурах и давлении, что недопустимо по отношению к полимерным мембранам. Отработанные неорганические мембраны, в отличие от полимерных, можно регенерировать выжиганием органического осадка, проникшего в их поры.

2. Устойчивость в химически и биологически агрессивных средах, в раз-личных растворителях. Керамические мембраны можно применять в широком диапазоне изменения pH среды. Особенно высокую химическую устойчивость имеют керамические мембраны на основе оксидов алюминия, циркония и титана.

3. Возможность получения мембран со специальными свойствами и регулирование этих свойств. Например, мембраны могут обладать каталитическими свойствами; иметь различный поверхностный заряд; быть гидрофобными или гидрофильными.

4. Керамические мембраны сохраняют свои свойства при нагреве до 1000° С, способны работать под большим давлением (1–10 МПа), могут периодически подвергаться стерилизации паром при температуре 120 °С (для получения стабильно стерильного ультрафильтрата) или прокаливаться для удаления загрязнений при температуре 500 °С.

Существенными недостатками неорганических мембран являются их высокая стоимость и хрупкость. Один из путей устранения хрупкости состоит в формировании композиционных мембран. При этом предполагается использование макропористых керамических подложек в качестве основы, что может привести к улучшению функциональных характеристик неорганических мембран и их физико-механических свойств.

Высокая стоимость неорганических мембран (в 3–5 раз больше полимерных) компенсируется их более высокими эксплуатационными характеристиками (производительность до 20 000 л/(ч×м2×МПа) в отличие от полимерных – 5000 л/(ч×м2×МПа); селективность 98–99,9 %) и сроком службы до 10 и более лет.

В настоящее время выпускаются керамические мембраны в виде изотропных трубок и пластин, анизотропных трубок, асимметричных композиционных труб. Наиболее высокие эксплуатационные характеристики имеют мембраны, представляющие собой композиционные многоканальные монолиты с асимметричной структурой, разработаны мембраны со сверхтонким рабочим слоем, обладающие каталитической активностью.

Трубчатые керамические элементы имеют диаметр мембранного канала до 10–40 мм. Для повышения механической прочности их армируют либо изготавливают в оболочках из нержавеющих сталей, имеющих коэффициенты линейного расширения, близкие к коэффициентам расширения керамики. При соблюдении последнего условия получаются фильтрующие элементы, работоспособные при температурах до 400 °С.

Трубчатые элементы с диаметром мембранного канала порядка 10–25 мм обычно успешно применяют для очистки эмульсий, содержащих жиры и масла с высокой адгезией к материалу мембраны. В таких аппаратах можно создать наиболее развитый турбулентный режим движения очищаемой жидкости.

В настоящее время наиболее исследованы неорганические керамические мембраны, полученные из материалов на основе оксидов алюминия, кремния, карбида кремния, нитридов углерода.

Разработаны промышленные способы получения микро- (диаметр пор порядка 0,1-10 мкм) и ультрафильтрационных мембран с порами в селективном слое диаметром ~ 10–50 нм.

Более сложную задачу представляет получение керамических мембран для процессов обратного осмоса. Но вероятно, что обратноосмотические керамические мембраны будут широко применяться в будущем, что сделает возможным очистку и опреснение горячих агрессивных и сильнозагрязненных сточных вод различных отраслей промышленности.

В последние годы для тонкой очистки жидких сред используют композиционные керамические микро- и ультрафильтрационные мембраны, которые состоят из подложки с размером пор 1–15 мкм, одного или двух промежуточных слоев (толщиной 0,1–1 мкм) и верхнего рабочего слоя (3–100 нм). Верхний слой может быть модифицирован химически. Сочетание первых двух слоев, называемых первичной мембраной, используют для микрофильтрации. Вторичная мембрана предназначена для ультрафильтрации, а химически модифицированная – для обратного осмоса или разделения газов.

Керамические мембраны для микрофильтрации получают из дисперсных порошков (как правило, оксидов) с добавками гидроксидов, карбонатов, силикатов и др. путем их спекания с формированием ячеистой структуры.

Традиционным методом получения пористых керамических подложек является спекание порошков определенной дисперсности (кварц, стекло, оксиды металлов) со связующими веществами, которыми могут быть жидкое стекло, глинистые минералы (каолинит, монтмориллонит), алюмофосфатное связующее, полимеры. Для увеличения пористости керамики в некоторых случаях вводят выгорающие (древесные опилки, муку, крахмал) или газообразующие (кальцит, магнезит) добавки. Регулируя дисперсность порошков, количество и природу связующих добавок и способ термической обработки смеси, получают керамическую подложку с различной пористостью и проницаемостью.

В настоящее время наиболее полно разработаны методы получения керамических мембран на основе дисперсного оксида алюминия. Такие мембраны отличаются механической прочностью и термостойкостью. Они пригодны для получения композиционных мембран с использованием оксидов других многозарядных металлов, т. к. их коэффициенты линейного расширения близки.

Керамические мембраны на основе порошков оксида алюминия имеют пористую структуру с размерами пор сравнительно большого диаметра (порядка 100 нм – 10 мкм) и пригодны для микрофильтрации.

На основные показатели пористой керамической подложки влияет изменение технологических параметров процесса (усиление прессования, дисперсность корунда, температура обжига, время изотермической выдержки, а также тип и количество связующего).

Необходимые прочностные свойства пористой керамической подложки, стойкость к воздействию агрессивных сред во многом определяются природой и количеством использованных связующих. В связи с тем, что структура пористого материала представляет собой каркас из частиц корунда, окруженных стекловидной фазой связующего, между которыми находятся поры, сообщающиеся между собой и атмосферой, химическая устойчивость материала определяется, прежде всего, устойчивостью стекла, находящегося на поверхности частиц наполнителя. Поэтому процесс разрушения такого материала и его сопротивляемость воздействию агрессивных сред в конечном итоге определяется составом стеклофазы, совершенством структуры образующихся кристаллических фаз, а также природой агрессивного агента и температурой воздействия. Такие стекла под действием щелочи или кислоты интенсивно гидролизуются, образуя в качестве продуктов гидроксиды металлов и коллоидную кремнекислоту. Последняя остается на поверхности стекла в виде тонкого слоя, и ход дальнейшего разрушения зависит уже от диффузии воды и продуктов гидролиза через этот защитный слой.

Как правило, промышленные керамические фильтры имеют трубчатую форму, производство которых состоит из двух стадий: вначале изготавливают подложку, затем на нее наносят рабочий слой (собственно мембрану).

Из порошков оксида алюминия, характеризующегося высокой однородностью частиц по размеру, получают трубчатые подложки с диаметром стенки 1–2 мм. Средний размер пор составляет 0,2– 4 мкм.

Использование стандартных методов порошковой металлургии путем подбора керамического наполнителя соответствующего грануло-метрического состава с последующим его спеканием позволяет получать пористые керамические подложки с необходимой совокупностью свойств.

В качестве исходного материала для нанесения микропористого слоя на подложку используют тонкодисперсные оксиды. Формирование тонких селективных слоев на поверхности грубопористой основы осуществляют методами распыления из пульверизатора дисперсии на нагретую (35 – 40°С) поверхность подложки, нанесениемдисперсии на вращающуюся с фиксированной скоростью поверхность подложки,седиментационном осаждением из дисперсии фракции, содержащей частицы разного размера,погружением покрываемой подложки в дисперсию, золь-гель технологии.

Золь-гель технология заключается в том, что на поверхности подложки происходит переход коллоидного раствора из свободнодисперсного состояния (золя) в связнодисперсное (гель). Так как частицы золя можно получать практически одинакового размера и сферической формы, то из них могут быть изготовлены мембраны с тонкими порами и узким распределением их по размеру в рабочем слое. Золь-гель технология включает в себя три основные стадии: получение золя; осаждение его на пористой подложке с образованием геля; сушка и обжиг. Устойчивость золя сильно сказывается на характеристиках образующегося геля: чем устойчивее золь, тем более плотную структуру имеет гель и тем меньше в нем макрополостей, заполненных жидкой фазой.

Мембраны, полученные золь-гель методом, отличаются узким распределением пор по размерам. В рабочем слое мала доля крупных неселективных пор.

Недостатками золь-гель технологии является усадка при спекании, хрупкость мембраны после сушки, а также высокая стоимость исходных металлоорганических соединений.

Свойства керамических мембран, их селективность, проницаемость зависит от температуры обжига. Например, мембраны, полученные обжигом при температуре 400 °С , проявляют селективность к полиэтиленгликолю и декстрану с молярной массой 3000, а мембраны, обработанные при 800 °С, селективны к соединениям с молярной массой – 20000.

Селективность регулируется не только температурой обжига керамической мембраны, но и количеством микродобавок. Однако получение высокоселективных мембран, позволяющих разделять жидкие смеси высокомолекулярных соединений на узкие фракции, все еще остается сложной и трудно решаемой задачей.

Изменяя условия синтеза, можно разрабатывать керамические проницаемые мембраны с заданной пористой структурой, в том числе с канальной пористостью. Такие мембраны получают на основе глин с использованием волокнистых наполнителей различными методами.

Мембраны на основе глин с поровой структурой, приближенной к канальной можно получить за счет введения в состав шихты органических и неорганических волокнистых наполнителей: карбоксилцеллюлозы, целлюлозы, стекловолокна и др. Стекловолокно, имеющее температуру плавления 1100–1200 °С, при термообработке участвует в спекании, образуя расплав, который впитывается матрицей, оставляя на своем месте пустоты.

В настоящее время особое внимание уделяется технологии получения и свойствам высокопористых керамических материалов на основе нитрида и карбида кремния, сиалона, т.к. они обладают высокой прочностью, термостойкостью, способностью к регулированию пористой структуры. Для получения таких материалов обычно используют метод реакционного спекания. При этом получают материалы, обладающие пористостью 20– 40 %.

Материалы и изделия на основе нитрида кремния формируются из порошка кремния, который в ходе нагрева в среде азота или азотсодержащей газовой смеси превращается в нитрид кремния по реакции:

3Si + 2N2 ® Si3N4 (7.1.)

Реакционное спекание является сложным многостадийным процессом, результаты которого существенно зависят от чистоты и гранулометрического состава порошка кремния, наличия добавок, пористости и размеров заготовки, температурного режима. Для протекания реакции (1.1) необходимо поступление азота внутрь заготовки, поэтому как исходная заготовка, так и конечный материал – пористые.

Другой особенностью является отсутствие усадки при реакционном спекании. Новая фаза, образующаяся в ходе реакции, формируется в порах, поэтому, несмотря на увеличение массы в ходе реакции на 66,7% и повышении объема твердой фазы на 22% , изменения линейных размеров не превышают 0,1%.

В структуре реакционно спеченного нитрида кремния присутствуют нитевидные кристаллы нитрида кремния, наличие которых является одной из причин относительно высокой прочности этого материала. Высококачественный реакционно спеченный нитрид кремния имеет плотность порядка 2,6–2,7 г/см3 и мелкие однородные поры, что обеспечивает прочность sи на уровне 200–300 МПа, которая сохраняется до температур 1400 °С и выше.

Для получения высокопористых материалов на основе нитрида кремния могут применяться пенометод и метод с использованием полимерной подложки. В качестве подложки при получении нитрида кремния используется пенополиуретан с открытыми ячейками. Этот метод включает приготовление суспензии, нанесение суспензии на подложку, выжигание пористого полиуретана и временной связки, реакционное спекание в азоте.

В научном центре порошковой металлургии (НЦ ПМ) г. Пермь разработаны методики синтеза и получены образцы пористых сиалоновых материалов на основе каолина и карбидкремниевых материалов, обладающие высокой прочностью и термостойкостью. Размер пор этих материалов можно регулировать в пределах 0,1–2 мкм. Мембраны с такими параметрами пор можно использовать в процессах микро- и ультрафильтрации.

Мембраны из карбида кремния привлекают внимание исследователей тем, что наличие в структуре SiC аморфного углерода способствует сорбции органических примесей при фильтрации воды.

Пористые сиалоновые материалы синтезируют из сырья на основе каолина методом реакционного спекания смеси каолина с графитом в атмосфере азота. Формование мембран осуществляют методом сухого прессования ультрадисперсных порошков (УДП) в металлических пресс-формах при давлении 0,2–250,0 МПа, спекание в атмосфере азота – при температуре 1400–1600 °С.

Наши рекомендации