Катализаторы: механизм и химизм каталитического крекинга
Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный — образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества [1]. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.
Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO. [1]
Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия,активированный уголь и др.).
Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.
Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.
Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.
В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции [2][3]. Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня[2].
В биохимических реакциях роль катализаторов играют ферменты.
Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.
Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.
27.Химизм процесса и технологическая схема установки производства битумов (УПБ). Назначение– получение битумов различных сортов и марок. Для производства битумов применяются следующие способы:
- Глубокая вакуумная перегонка (получаемый при этом продукт называется остаточным битумом);
- Окисление нефтепродуктов воздухом при высокой температуре (с получением так называемых окисленных битумов
- Компаундирование остаточных и окисленных битумов.
Ниже рассматривается процесс производства битумов окислением тяжелых нефтяных фракций.
Сырье и продукция. Сырьем являются остатки атмосферно-вакуумной перегонки нефти (гудроны), побочные продукты производства масел (асфальты и экстракты). Наилучшим сырьем считаются остатки высокосмолистых, малопарафинистых нефтей, наихудшим – остатки высокопарафинистых нефтей, поскольку при окислении этих продуктов образуется большое количество асфальтенов и карбенов, вследствие чего битум становится хрупким и неэластичным.
Продукцией являются:
- дорожные битумы, применяемые в дорожном строительстве для приготовления асфальтобетонных смесей;
- кровельные битумы, используемые при изготовлении кровельных покрытий и различных изделий;
- строительные битумы, используемые при выполнении различных строительных работ, в частности, для гидроизоляции фундаментов зданий;
- специальные битумы, используемые в различных отраслях промышленности.
Технологическая схема. Окисление остатков проводится как периодическим (в кубах), так и непрерывным (в трубчатых реакторах и окислительных колоннах) способом. Воздух подается с помощью компрессоров или вращающихся диспергаторов (при получении битумов бескомпрессорным методом на установках малой мощности).
Установка состоит из двух блоков – на первом получают строительные, на втором - дорожные вязкие битумы. Гудрон через печь П-1 поступает в емкость Е-1, а затем в смесителях М-1 и М-2 контактирует с воздухом и рециркулирующим окисленным продуктом и далее смесь направляется в трубчатые реакторы первого блока Р-1, Р-2. Продукты окисления из реакторов переходят в испаритель К-1, где происходит отделение газообразной фазы от жидкой. Газы (воздух, пары отгона, окислы углерода и серы) через холодильник Х-1 направляются в сепаратор К-3. Из К-3 выводятся несконденсировавшиеся газы окисления – на сжигание в печь П-3, отгон – через холодильник Х-5 с установки.
Окисленный продукт с низа испарителя К-1 частично возвращается в смесители М-1 и М-2 на рециркуляцию, а балансовый избыток откачивается в емкости Е-3 – Е-6. Из емкостей строительный битум поступает на розлив в крафт-мешки и автобитумовозы.
Дорожные битумы получают окислением асфальта деасфальтизации по схеме, аналогичной описанной выше (смесители М-3 и М-4 - реакторы Р-3 и Р-4 - испаритель К-2). Окисленный продукт из испарителя К-2 подается в смеситель М-5 на компаундирование с поверхностно-активными веществами и экстрактом селективной очистки масел, а затем попадает в емкости Е-7 – Е-14. Если на предприятии отсутствуют асфальты и экстракты (НПЗ топливного профиля), то дорожные битумы получают окислением гудрона.
Дорожные вязкие битумы разливаются из емкостей Е-7, Е-8 в железнодорожные цистерны, бункерные полувагоны и автобитумовозы. Для получения дорожных жидких битумов вязкие битумы в смесителе М-6 смешиваются с разжижителем – керосино-газойлевой фракцией.
Технологический режим:
Температура, °С: | |
Сырья на входе на установку | 100-120 |
Окисления в Р-1 – Р-4 | |
Битума после Х-2, Х-3, Х-4 | |
Давление, кг/см2 | |
Воздуха на входе в смесители | |
Смеси на входе в Р-1 – Р-4 | |
Расход воздуха, м3/ м3 продукта | 100-150 |
Отношение рециркулят: сырье | 6:1 |