По типу рабочего цикла
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ»
Институт Технологии
Кафедра охраны окружающей среды и рационального использования природных ресурсов
Доклад
по дисциплине «Альтернативные источники энергии»
Тема «Магнитогидродинамический генератор»
Выполнил:
Студентка 1 курса 811 группы
Байкова Анастасия Алексеевна
Проверил:
ст. преподаватель Васильева Е.А.
Санкт-Петербург
2015 год
Содержание
1. Определение
2. Принцип действия
3. Устройство
4. Классификация
4.1. По источнику тепла
4.2. По типу рабочего цикла
4.3. По форме канала
5. История изобретения
6. Достоинства
7. Применение
8. Список литературы
Магнитогидродинамический генератор, МГД-генератор - энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию. В МГД-генераторе происходит прямое преобразование механической энергии движущейся среды в электрическую энергию. Движение таких сред описывается магнитной гидродинамикой, что и дало наименование устройству.
Рис.1
МГД-генератор Фарадея с линейным соплом и сегментированными электродами:
entry — входное отверстие для подвода рабочего тела (ионизированного газа);
acceleration nozzle — сопло для увеличения скорости рабочего тела;
solenoids — соленоиды для создания магнитного поля;
segmented electrodes — электроды, разделённые на сегменты для уменьшения эффекта Холла;
output — выходное отверстие для вывода рабочего тела;
красная линия — направление движения отрицательно заряженных частиц;
синяя линия — направление движения положительно заряженных частиц;
B — магнитная индукция;
I — электрический ток;
v — скорость рабочего тела
Принцип действия
Также как и в обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.
Рабочим телом МГД-генератора могут служить следующие среды:
- Электролиты
- Жидкие металлы
- Плазма (ионизированный газ)
Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля.
Устройство
МГД-генератор состоит из канала, по которому движется рабочее тело (обычно плазма), системы магнитов для создания магнитного поля и электродов, отводящих полученную энергию. В качестве магнитов могут быть использованы электромагниты или постоянные магниты, а также другие источники магнитного поля.
Рис.2 Принципиальная конструктивная схема Мгд-генератора:
1-обкладка электромагнита; 2 - камера сгорания; 3 - присадка; 4 - воздух;
5 - топливо; 6 - сопло; 7 - электроды; 8 - продукты сгорания
Принципиальная конструктивная схема Мгд-генератора приведена на рис.2. В камеру сгорания для получения высоких температур подается топливо, воздух и присадка для увеличения ионизации плазмы. После прохождения сопла (суженной части конструкции) происходит расширение плазмы, увеличение скорости ее движения и образование ЭДС между электродами. Продукты сгорания представляют собой поток тепловой энергии, и их можно использовать для паросилового устройства.
Для создания электропроводности газа, его необходимо нагреть до температуры термической ионизации (около 10000 К). Для работы при меньших температурах газ обогащают парами щелочных металлов, что позволяет снизить температуру смеси до 2200—2700 К.
В отличие от МГД-генератора с жидким рабочим телом, где генерирование электроэнергии идёт только за счёт преобразования части кинетической или потенциальной энергии потока при постоянной температуре, в МГД-генераторах с газовым рабочим телом принципиально возможны три режима:
- С сохранением температуры и уменьшением кинетической энергии;
- С сохранением кинетической энергии и уменьшением температуры;
- Со снижением и температуры, и кинетической энергии.
Классификация
По источнику тепла
- Реактивные двигатели;
- Ядерные реакторы;
- Теплообменные устройства;
По типу рабочего цикла
- МГД-генераторы с открытым циклом. В данном случае продукты сгорания являются рабочим телом, а использованные газы после удаления из них присадки щелочных металлов выбрасываются в атмосферу.
- МГД-генераторы с замкнутым циклом. Здесь тепловая энергия, полученная при сжигании топлива, передаётся в теплообменнике рабочему телу, которое затем, пройдя МГД-генератор, возвращается через компрессор, замыкая цикл.
По форме канала
- Линейные — для кондукционных и индукционных генераторов;
- Дисковые и коаксиальные холловские — в кондукционных;
- Радиальные — в индукционных генераторах.
История изобретения
Впервые, идея использования жидкого проводника была выдвинута ещё Майклом Фарадеем, в 1832 г., совершившим неудачную попытку применения её на практике. В дальнейшем, в 1851 году английскому учёному Волластону удалось измерить ЭДС, индуцированную приливными волнами, однако отсутствие необходимых знаний по электрофизическим свойствам жидкостей и газов долго тормозило использование описанных эффектов на практике.
В последующие годы исследования развивались по двум основным направлениям: использование эффекта индуцирования ЭДС для измерения скорости движущейся электропроводной среды (например, в расходомерах) и генерирование электрической энергии.
Основные принципиальные схемы энергетических МГД-генераторов были запатентованы в начале XX века, но описанные в них конструкции были на практике нереализуемы.
Первый работающий МГД-генератор был построен только в 1950-х годах благодаря развитию теории магнитной гидродинамики и физики плазмы, исследованиям в области физики высоких температур и созданию к этому времени жаропрочных материалов, использовавшихся тогда, прежде всего, в ракетной технике.
Источником плазмы с температурой 3000 К в первом МГД-генераторе, построенном в США в 1959 году, служил плазмотрон, работавший на аргоне с присадкой щелочного металла для повышения степени ионизации газа. Мощность генератора составляла 11,5 кВт. К середине 60-х годов мощность МГД-генераторов на продуктах сгорания удалось довести по 32 МВт.
В СССР первая лабораторная установка «У-02», работавшая на природном топливе, была создана в 1965. В 1971 году была пущена опытно-промышленная энергетическая установка «У-25», имеющая расчётную мощность 20—25 МВт.
«У-25» работала на продуктах сгорания природного газа с добавкой K2CO3 в качестве ионизирующейся присадки, температура потока — около 3000 К. Установка имела два контура: первичный, разомкнутый, в котором преобразование тепла продуктов сгорания в электрическую энергию происходит в МГД-генераторе, и вторичный, замкнутый — паросиловой контур, использующий тепло продуктов сгорания вне канала МГД-генератора. Электрическое оборудование «У-25» состояло из МГД-генератора и инверторной установки, собранной на ртутных игнитронах.
Достоинства
Основное преимущество МГД-генератора — отсутствие в нём движущихся узлов или деталей, непосредственно участвующих в преобразовании тепловой энергии в электрическую. Это позволяет существенно увеличить начальную температуру рабочего тела и, следовательно, КПД электростанции.
В сочетании с паросиловыми установками, МГД-генератор позволяет получить большие мощности в одном агрегате, до 500—1000 МВт.
Применение
Теоретически, существуют четыре направления промышленного применения МГД-генераторов:
1. Тепловые электростанции с МГД-генератором на продуктах сгорания топлива (открытый цикл); такие установки наиболее просты и имеют ближайшую перспективу промышленного применения;
2. Атомные электростанции с МГД-генератором на инертном газе, нагреваемом в ядерном реакторе (закрытый цикл); перспективность этого направления зависит от развития ядерных реакторов с температурой рабочего тела свыше 2000 K;
3. Термоядерные электростанции безнейтронного цикла c МГД-генератором на высокотемпературной плазме;
4. Циклы с МГД-генератором на жидком металле, которые перспективны для атомной энергетики и для специальных энергетических установок сравнительно небольшой мощности.
Энергетические установки с МГД-генератором могут применяться также как резервные или аварийные источники энергии в энергосистемах, для бортовых систем питания космической техники, в качестве источников питания различных устройств, требующих больших мощностей на короткие промежутки времени (например, для питания электроподогревателей аэродинамических труб и т. п.).
Несмотря на заманчивые перспективы и бурное развитие исследований в области МГД-генераторов в 1970-е, устройства на их основе так и не нашли широкого промышленного применения вплоть до настоящего времени.
Цель и задачи поставленные в работе выполнены. В частности,исследовано понятие и принцип действия МГД-генератора, рассмотрены само устройство, его классификация по нескольким пунктам и история изобретения, также изучены достоинства данной установки и ее применение.
Список литературы:
1.Ашкинази Л. МГД–генератор //Квант, 1980
2. Роза Р., Магнитогидродинамическое преобразование энергии, пер. с англ., М., 1970
3. http://esco-ecosys.narod.ru/2005_11/art07_49.htm
4. http://dic.academic.ru/dic.nsf/ruwiki/36282