Достоинства и не достатки
Главные достоинства ударного бурения - простота и надежность.
Недостаток ударно-канатного бурения – низкая скорость проходки. Поэтому данный способ применяют, если нужна скважина не глубже 250 метров.
(ВОПРОС 32) Оборудование вращательного способа бурения скважин, достоинства и недостатки, область применения. Колонковое бурение.
Колонковое бурение- предусматривает разрушение породы только по кольцу с целью извлечения керна-цилиндрического образца горной породы
(33 вопрос) Назначение и состав буровой установки
Буровая установка—это комплекс наземного оборудования, необходимый для выполнения операций по проводке скважины. В состав буровой установки входят (рис. 6.4): • буровая вышка; • оборудование для механизации спускоподъемных операций; • наземное оборудование, непосредственно используемое при бурении; • силовой привод; • циркуляционная система бурового раствора; • привышечные сооружения.
(вся информация в тетради)
34 вопрос Буровое оборудование и буровой инструмент
Буровое оборудование:
В качестве забойных двигателей при бурении используют турбобур, электробур и винтовой двигатель, устанавливаемые непосредственно над долотом. Турбобур (рис. 6.15)—это многоступенчатая турбина (число ступеней до 350), каждая ступень которой состоит из статора, жестко соединенного с корпусом турбобура, и ротора, укрепленного на валу турбобура. Поток жидкости, стекая с лопаток статора, натекает на лопатки ротора, отдавая часть своей энергии на создание вращательного момента, снова натекает на лопатки статора и т. д. Хотя каждая ступень турбобура развивает относительно небольшой момент, благодаря их большому количеству, суммарная мощность на валу турбобура оказывается достаточной, чтобы бурить самую твердую породу. При турбинном бурении в качестве рабочей используется промывочная жидкость, двигающаяся с поверхности земли по бурильной колонне к турбобуру. С валом турбобура жестко соединено долото. Оно вращается независимо от бурильной колонны.
При бурении с помощью электробура питание электродвигателя осуществляется через кабель, укрепленный внутри бурильных труб. В этом случае вместе с долотом вращается лишь вал электродвигателя, а его корпус и бурильная колонна остаются неподвижными. Основными элементами винтового двигателя (рис. 6.16) являются статор и ротор. Статор изготовлен нанесением специальной резины на внутреннюю поверхность стального корпуса. Внутренняя поверхность статора имеет вид многозаходной винтовой поверхности. А ротор изготовляют из стали в виде многозаходного винта. Количество винтовых линий на одну меньше, чем у статора.
Буровой инструмент:
Инструмент, используемый при бурении, подразделяется на основной (долота) и вспомогательный (бурильные трубы, бурильные замки, центраторы ). Как уже отмечалось, долота бывают лопастные, шарошечные, алмазные и твердосплавные.
Рис. 6.15. Турбобур: а) общий вид; б) ступень турбобура; 1—вал; 2—корпус; 3—ротор; 4—статор
Рис. 6.16. Винтовой двигатель: а) общий вид; б) полости, образуемые между ротором (винтом) и статором; 1—переводник; 2—корпус двигательной секции; 3—статор; 4—ротор; 5— карданный вал; 6—корпус шпинделя; 7—торцовый сальник; 8—многорядный радиально-упорный подшипник; 9—радиальная резинометаллическая опора; 10—вал шпинделя
(35 вопрос) Необходимость и особенности ведения буровых работ на море
В настоящее время на долю нефти, добытой из морских месторождений, приходится около 30% всей мировой продукции, а газа— еще больше. Как люди добираются до этого богатства? Самое простое решение—на мелководье забивают сваи, на них устанавливают платформу, а на ней уже размещают буровую вышку и необходимое оборудование. Другой способ—«продлить» берег, засыпав мелководье грунтом. При бурении нефтяных и газовых скважин в глубоководных районах морей и океанов использовать стационарные платформы технически сложно и экономически невыгодно. Для этого случая созданы плавучие буровые установки, способные самостоятельно или с помощью буксиров менять районы бурения. Различают самоподъемные буровые платформы, полупогружные буровые платформы и буровые платформы гравитационного типа.
(36 вопрос) Добыча нефти и газа. Этапы добычи нефти и газа
Процесс добычи нефти и газа включает три этапа. Первый— движение нефти и газа по пласту к скважинам, благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин. Он называется разработкой нефтяных и газовых месторождений. Второй этап— движение нефти и газа от забоев скважин до их устьев на поверхности. Его называют эксплуатацией нефтяных и газовых скважин. Третий этап—сбор продукции скважин и подготовка нефти и газа к транспортированию потребителям. В ходе этого этапа нефть, а также сопровождающие ее попутный нефтяной газ и вода собираются, затем газ и вода отделяются от нефти, после чего вода закачивается обратно в пласт для поддержания пластового давления, а газ направляется потребителям. В ходе подготовки природного газа от него отделяются пары воды, коррозионно активные (сероводород) и балластные (углекислый газ) компоненты, а также механические примеси.
(ВОПРОС 37). Разработка нефтяных и газовых месторождений. Силы, действующие в продуктивном пласте
Движение нефти и газа по пласту к скважинам, благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин называется разработкой нефтяных и газовых месторождений.
Всякая нефтяная и газовая залежь обладает потенциальной энергией, которая в процессе разработки залежи переходит в кинетическую и расходуется на вытеснение нефти и газа из пласта. Запас потенциальной энергии создается:
· Напором краевых вод
· Напором газовой шапки
· Энергией растворенного газа, выделяющегося из нефти при снижении давления
· Энергией, которой обладают сжатые нефть, вода и вмещающая их порода
· Силой тяжести
Краевые воды, действуя на поверхность водонефтяного контакта, создают давление в нефти и газе, способствующее заполнению пор продуктивного пласт. Аналогичное действие оказывает газ, находящийся в газовой шапке, но он действует через поверхность газонефтяного контакта.
Растворенный газ, выделившийся из нефти после снижения давления, способствует его сохранению в дальнейшем на некотором уровне. Всякое уменьшение количества нефти в пласте приводит к тому, что этот объем занимают пузырьки газа, и поэтому нефть находится под действием практически неизменного давления. Его снижение начнется, когда выделение газа из растворенного состояния не будет успевать за отбором нефти.
Действие упругих сил нефти, воды и вмещающей их породы проявляется в следующем. По мере отбора нефти и газа, происходит некоторое снижение пластового давления, в результате чего пластовые флюиды и порода разжимаются, замедляя темп его падения. Сила тяжести обеспечивает сток нефти из повышенных частей пласта в пониженные, где расположены забои скважин.
(ВОПРОС 38). Источники пластовой энергии и режимы работы залежей
В зависимости от источника пластовой энергии, обуславливающего перемещение нефти по пласту к скважинам, различают пять основных режимов работы залежей: жестководонапорный, упруговодонапорный, газонапорный, растворенного газа и гравитационный.
При жестководонапорном режиме источником энергии является напор краевых вод. Ее запасы постоянно пополняются за счет атмосферных осадков и источников поверхностных водоемов. Отличительной особенностью жестководонапорного режима является то, что поступающая в пласт вода полностью замещает отбираемую нефть. Контур нефтеносности при этом непрерывно перемещается и сокращается.
Эксплуатация нефтяных скважин прекращается, когда краевые воды достигают забоя тех из них, которые находятся в наиболее высоких частях пласта, и вместо нефти начинает добываться только вода.
На практике всегда есть еще один промежуточный этап разработки нефтяных месторождений, когда одновременно с нефтью добывается вода. Это связано с тем, что из-за неоднородности пласта по проницаемости и сравнительно высокой вязкости нефти в пластовых условиях по отношению к вязкости пластовой воды происходит прорыв краевых и подошвенных вод к забою скважин.
При жестководонапорном режиме работы нефтяной залежи обеспечивается самый высокий коэффициент нефтеотдачи пластов, равный 0,5…0,8.
При жестководонапорном режиме давление в пласте настолько велико, что скважины фонтанируют. Но отбор нефти и газа не следует производить слишком быстро, поскольку иначе темп притока воды будет отставать от темпа отбора нефти и давление в пласте будет падать, фонтанирование прекратится.
При упруговодонапорном режиме основным источником пластовой энергии служат упругие силы воды, нефти и самих пород, сжатых в недрах под действием горного давления. При данном режиме по мере извлечения нефти давление в пласте постепенно снижается. Соответственно уменьшается и дебит скважин.
Отличительной особенностью этого режима является то, что водоносная часть пласта значительно больше нефтеносной (границы водоносной части отстоят от контура нефтеносности на 100 км и более).
Хотя расширение породы и жидкости при уменьшении давления в пласте, отнесенное к единице объема, незначительно, при огромных объемах залежи и питающей ее водонапорной системы таким образом можно извлечь до 15% нефти от промышленных запасов.
Коэффициент нефтеотдачи при упруговодонапорном режиме также может достигать 0,8.
При газонапорном режиме источником энергии для вытеснения нефти является давление газа, сжатого в газовой шапке. Чем больше ее размер, тем дольше снижается давление в ней.
В месторождениях, работающих в газонапорном режиме, процесс вытеснения нефти расширяющимся газом обычно сопровождается гравитационными эффектами. Газ, выделяющийся из нефти, мигрирует вверх, пополняя газовую шапку и оттесняя нефть в пониженную часть залежи.
По мере понижения уровня газонефтяного контакта происходит прорыв газа к нефтяным скважинам, находящимся ближе к контуру газоносности, и их эксплуатация прекращается, т. к. в противном случае расходование энергии расширения газа газовой шапки будет нерациональным.
Коэффициент нефтеотдачи пласта при газонапорном режиме составляет 0,4…0,6.
При режиме растворенного газа основным источником пластовой энергии является давление газа, растворенного в нефти. По мере понижения пластового давления газ из растворенного состояния переходит в свободное. Расширяясь пузырьки газа выталкивают нефть к забоям скважин.
Коэффициент нефтеотдачи при режиме растворенного газа самый низкий и составляет 0,15…0,3. Причина этого в том, что запас энергии газа часто полностью истощается намного раньше, чем успевают отобрать значительные объемы нефти.
Гравитационный режим имеет место в тех случаях, когда давление в нефтяном пласте снизилось до атмосферного, а имеющаяся в нем нефть не содержит растворенного газа. При этом режиме нефть стекает в скважину под действием силы тяжести, а оттуда она откачивается механизированным способом.
Если в залежи нефти одновременно действуют различные движущие силы, то такой режим ее работы называетсясмешанным.
При разработке газовых месторождений гравитационный режим и режим растворенного газа отсутствуют.
Необходимо подчеркнуть, что естественная пластовая энергия в большинстве случаев не обеспечивает высоких темпов и достаточной полноты отбора нефти из залежи. Это связано с тем, что ее извлечению из пласта препятствует достаточно много факторов, в частности силы трения, силы поверхностного натяжения и капиллярные силы.
(ВОПРОС 39). Методы воздействия на нефтяные пласты и призабойную зону.
Для повышения эффективности естественных режимов работы залежи применяются различные искусственные методы воздействия на нефтяные пласты и приза- бойную зону. Их можно разделить на три группы:
1) методы поддержания пластового давления (заводнение, закачка газа в газовую шапку пласта); 2) методы, повышающие проницаемость пласта и призабойной зоны (солянокислотные обработки призабойной зоны пласта, гидроразрыв пласта и др.);
3) методы повышения нефтеотдачи и газоотдачи пластов.
(ВОПРОС 40). Методы поддержания пластового давления.
Искусственное поддержание пластового давления достигается методами законтурного, приконтурного и внутриконтурного заводнения, а также закачкой газа в газовую шапку пласта. Метод законтурного заводнения применяют при разработке сравнительно небольших по размерам залежей. Он заключается в закачке воды в пласт через нагнетательные скважины, размещаемые за внешним контуром нефтеносности на расстоянии 100 м и более. Эксплуатационные скважины располагаются внутри контура нефтеносности параллельно контуру. В результате заводнения приток воды к пласту увеличивается и давление в нефтяной залежи поддерживается на высоком уровне.
Метод приконтурного заводнения применяют на месторождениях с низкой проницаемостью продуктивных пластов в части, заполненной водой. Поэтому нагнетательные скважины располагают либо вблизи контура нефтеносности, либо непосредственно на нем.
Метод внутриконтурного заводнения применяется для интенсификации разработки нефтяной залежи, занимающей значительную площадь. Сущность этого метода заключается в искусственном «разрезании» месторождения на отдельные участки, для каждого из которых осуществляется нечто подобное законтурному заводнению. Нетрудно видеть, что методами заводнения искусственно создается жестководонапорный режим работы залежи.
Для поддержания пластового давления применяют также метод закачки газа в газовую шапку нефтяного пласта. В этих целях используют нефтяной газ, отделенный от уже добытой нефти. Благодаря закачке газа увеличивается давление на нефтяную часть залежи, и дебиты нефтяных скважин растут. В качестве нагнетательных в этом случае используют отработавшие нефтяные скважины, вскрывшие верхнюю часть продуктивного пласта, или бурят специальные скважины. Нагнетание газа в пласт производят при давлениях выше пластового на 10…20%. Как видно, при закачке газа в газовую шапку искусственно создается газонапорный режим работы залежи. В настоящее время этот метод применяют редко в связи с дороговизной процесса и дефицитностью самого газа.
(ВОПРОС 41). Методы повышения проницаемости пласта и призабойной зоны.
Для увеличения проницаемости пласта и призабойной зоны применяют механические, химические и физические методы.
К механическим методам относятся гидравлический разрыв пласта (ГРП), гидропескоструйная перфорация (ГПП) и торпедирование скважин.
Гидроразрыв пласта производится путем закачки в него под давлением до 60 МПа нефти, пресной или минерализованной воды, нефтепродуктов и других жидкостей. В результате этого в породах образуются новые или расширяются уже существующие трещины.
Гидропескоструйная перфорация - это процесс создания отверстий в стенках эксплуатационной колонны, цементном камне и горной породе для сообщения продуктивного пласта со стволом скважины за счет энергии песчано-жидкостной струи, истекающей из насадок специального устройства.
Торпедированием называется воздействие на призабойную зону пласта взрывом. Для этого в скважине напротив продуктивного пласта помещают соответствующий заряд взрывчатого вещества и подрывают его. При взрыве торпеды образуется мощная ударная волна, которая проходит через скважинную жидкость, достигает стенок эксплуатационной колонны, наносит сильный удар и вызывает растрескивание отложений. В дальнейшем пульсация газового пузыря, образовавшегося из продуктов взрыва, обеспечивает вынос разрушенного осадка из каналов.
К химическим методам воздействия на призабойную зону относятся обработки кислотами, ПАВ, химреагентами и органическими растворителями.
Кислотные обработки осуществляются соляной, плавиковой, уксусной, серной и угольной кислотами.
Обработка призабойной зоны пластов ПАВ преследует цель удаления воды и загрязняющего материала. Механизм действия ПАВ заключается в снижении поверхностного натяжения на границе воды с нефтью, газом и породой. Благодаря этому размер капель воды в поровом пространстве уменьшается в несколько раз и облегчается их вынос.
С помощью химреагентов и органических растворителей удаляют асфальто-смолистые и парафиновые отложения.
К физическим методам воздействия на призабойную зону относятся тепловые обработки и вибровоздействия.
Целью тепловых обработок является удаление парафина и асфальто-смолистых веществ. Для этого применяют горячую нефть, пар, электронагреватели, термоакустическое воздействие, а также высокочастотную электромагнитоакустическую обработку.
При вибровоздействиипризабойная зона пласта подвергается обработке пульсирующим давлением.
(ВОПРОС 42). Методы повышения нефтеотдачи и газоотдачи пластов
Для повышения нефтеотдачи применяются следующие способы:
- закачка в пласт воды, обработанной ПАВ: снижается поверхностное натяжение на границе нефть-вода, что способствует дроблению глобул нефти и образованию маловязкой эмульсии типа «нефть в воде», для перемещения которой необходимы меньшие перепады давления.
- вытеснение нефти растворами полимеров: создает условия для более равномерного продвижения водонефтяного контакта и повышения конечной нефтеотдачи пласта.
- закачка в пласт углекислоты: происходит растворение углекислоты в нефти, что сопровождается уменьшением вязкости последней и соответствующим увеличением притока к эксплуатационной скважине.
- нагнетание в пласт теплоносителя: Нагнетание в пласт теплоносителяпозволяет значительно снизить вязкость нефти и увеличить ее подвижность, способствует растворению в нефти выпавших из нее асфальтенов, смол и парафинов.
- внутрипластовое горение: заключается в том, что после зажигания тем или иным способом нефти у забоя нагнетательной скважины в пласте создается движущийся очаг горения за счет постоянного нагнетания с поверхности воздуха или смеси воздуха с природным газом.
- вытеснение нефти из пласта растворителями: в качестве вытесняющей фазы используются растворимые в нефти сжиженные пропан, бутан, смесь пропана с бутаном. В пласте они смешиваются с нефтью, уменьшая ее вязкость, что ведет к увеличению скорости фильтрации.
(ВОПРОС 43). Способы эксплуатации скважин, достоинства и недостатки различных способов эксплуатации скважин, области применения.
Все известные способы эксплуатации скважин подразделяются на следующие группы:
1) фонтанный, когда нефть извлекается из скважин самоиз-ливом;
2) с помощью энергии сжатого газа, вводимого в скважину извне;
3) насосный - извлечение нефти с помощью насосов различных типов.
Выбор способа эксплуатации нефтяных скважин зависит от величины пластового давления и глубины залегания пласта.
Фонтанный способ применяется если пластовое давление велико. В этом случае нефть фонтанирует, поднимаясь на поверхность по насосно-компрессорным трубам за счет пластовой энергии. Условием фонтанирования является превышение пластового давления над гидростатическим давлением столба жидкости, заполняющей скважину.
В стволе фонтанных скважин размещают колонну насосно-компрессорныхтруб. Этим обеспечивается предохранение обсадных труб от эрозии, вынос твердых частиц (и жидкости - при добыче газа) с забоя, возможность использования затрубного пространства для целей эксплуатации.
Фонтанный способ эксплуатации нефтяных скважин применяется на начальном этапе разработки месторождений. Все газовые скважины эксплуатируются фонтанным способом. Газ поступает на поверхность за счет пластового давления.
К оборудованию ствола относится оборудование, размещенное внутри эксплуатационной (обсадной) колонны в пространстве от забоя до устья. Набор этого оборудования зависит от способа эксплуатации скважин.
Компрессорным называется способ эксплуатации нефтяных скважин, при котором подъем жидкости из пласта на поверхность осуществляется сжатым газом, нагнетаемым в колонну подъемных труб.
Достоинствами являются:
1) отсутствие подвижных и быстроизнашивающихся деталей (что позволяет эксплуатировать скважины с высоким содержанием песка);
2) доступность оборудования для обслуживания и ремонта (поскольку все оно размещается на поверхности земли);
3) простота регулирования дебита скважин.
Недостатки:
1) высокие капитальные вложения на строительство мощных компрессорных станций и разветвленной сети газопроводов;
2) низкий к.п.д. газлифтного подъемника и системы «компрессор-скважина».
ОТДЕЛЬНО:
При фонтанном, компрессорном и бескомпрессорном способахдобычи нефти оборудование устья составляется из одинаковых деталей и узлов по подобным схемам.
При насосном способе эксплуатации подъем нефти из скважин на поверхность осуществляется штанговыми и бесштанговыми насосами.
Штанговый насос представляет собой плунжерный насос специальной конструкции, привод которого осуществляется с поверхности посредством штанги.
Недостаткамиштанговых насосов являются громоздкость, возможность обрыва штанг, ограниченность применения в наклонных и сильнообводненных скважинах, недостаточно высокая подача, небольшие (до 2 км) глубины эксплуатации.
Бесштанговые насосы(погружные электроцентробежные насосы, винтовые насосы и др).
Погружной электроцентробежный насос представляет собой набор отдельных ступеней, в каждой из которых имеется свой ротор (центробежное колесо) и статор (направляющий аппарат). Роторы отдельных ступеней посажены на один вал, жестко соединенный с валом погружного электродвигателя.
Существенными недостатками электроцентробежных насосов являются их низкая эффективность при работе в скважинах с дебитом ниже 60 м'/сут; снижение подачи, напора и кпд при увеличении вязкости откачиваемой смеси, а также при увеличении свободного газа на приеме насоса.
(ВОПРОС 44). Оборудование забоя скважины: открытый забой, перфорированный забой и забой, оборудованный фильтром.
Оборудование забоя предназначено для предотвращения разрушения продуктивного пласта и выноса на забой твердых частиц, а также для изоляции обводнявшихся пропластков. В то же время оно должно иметь возможно меньшее сопротивление и обеспечивать условия для проведения работ по увеличению производительности скважин.
В зависимости от геологических и технологических условий разработки месторождений применяют следующие типовые конструкции забоев скважин:
- открытый забой: башмак обсадной колонны цементируется перед кровлей пласта. Затем пласт вскрывается долотом меньшего размера, но никаких мер по укреплению ствола скважины в месте ее прохождения через продуктивный пласт не принимается. Такая конструкция забоя обеспечивает наименьшее . сопротивление притоку нефти и газа в скважину, но возможна только при достаточно устойчивых горных породах.
- забой, перекрытый хвостовиком колонны, перфорированным перед ее спуском: в этом случае скважина бурится сразу до подошвы продуктивного пласта и крепится обсадной колонной по всей длине. Но трубы обсадной колонны, расположенные напротив толщи продуктивного пласта, заранее перфорированы и пространство между ними и поверхностью пласта не цементируется.
- забой, оборудованный фильтром: применяется в случае, если существует опасность поступления песка в скважину. В этом случае башмак обсадной колонны спускается до кровли пласта и цементируется. На против его продуктивной части устанавливается специальный фильтр, а кольцевое пространство между верхней частью фильтра и низом обсадной колонны герметизируется.
- перфорированный забой: При их сооружении бурение ведется до подошвы продуктивного пласта, после чего в скважину опускают обсадные трубы и цементируют кольцевое пространство на всей ее длине. И только после этого производят перфорацию обсадной колонны и цементного камня на тех интервалах глубин, где ожидается приток нефти и газа.
Достоинствами скважин с перфорированным забоем являются: упрощение технологии проводки скважины; устойчивость забоя и сохранение проходного сечения скважины в процессе длительной эксплуатации; надежная изоляция пропластков, не вскрытых перфорацией; возможность поинтервального воздействия на призабойную зону пласта.
В то же время перфорированный забой не обеспечивает защиты от проникновения песка в скважину и создает дополнительное фильтрационное сопротивление потоку пластовой жидкости.
Вопрос 45.
Фонтанный способприменяется если пластовое давление велико. В этом случае нефть фонтанирует, поднимаясь на поверхность по насосно-компрессорным трубам за счет пластовой энергии. Условием фонтанирования является превышение пластового давления над гидростатическим давлением столба жидкости, заполняющей скважину.
Устройство скважины для фонтанной добычи нефти показано на рис. 7.12.
Нефть поступает в нее из пласта через отверстия в колонне эксплуатационных труб 1. Внутри эксплуатационной колонны находятся насосно-компрессорные трубы 2. Нефть поступает в них через башмак 3. Верхний конец насосно-компрессорных труб через фланец 4 соединяется с фонтанной арматурой 5. Фонтанная арматура представляет собой систему труб с задвижками. К этой системе присоединен штуцер 6, представляющий собой стальную болванку с цилиндрическим каналом малого сечения. Назначение штуцера заключается в ограничении притока нефти в скважину путем дросселирования давления на выходе из нее.
рис. 7.12.
Установка штуцера позволяет обеспечить длительную и бесперебойную работу скважины в фонтанном режиме. Кроме того, благодаря низким скоростям притока нефти, уменьшается загрязнение скважины частицами породы.
Из штуцера пластовая нефть попадает в сепаратор (или трап), где происходит ее разделение на нефть и нефтяной газ.
Фонтанный способ эксплуатации нефтяных скважин применяется на начальном этапе разработки месторождений.
Все газовые скважины эксплуатируются фонтанным способом. Газ поступает на поверхность за счет пластового давления.
Вопрос 46.
Компрессорнымназывается способ эксплуатации нефтяных скважин, при котором подъем жидкости из пласта на поверхность осуществляется сжатым газом, нагнетаемым в колонну подъемных труб.
Устройство скважины для компрессорной добычи нефти показано на рис. 7.13.
При компрессорном способе в скважину опускают две соос-ные трубы. Внутреннюю 2, по которой смесь извлекается наверх, называют подъемной,а наружную 3, по затрубному пространству между которой и трубой 2 в скважину под давлением подается газ, -воздушной.Подъемная труба короче воздушной.
Механизм компрессорной добычи нефти следующий (рис. 7.14). При закачке газа в скважину нефть сначала полностью вытесняется в подъемную трубу. После этого в подъемную трубу проникает закачиваемый газ. Он смешивается с нефтью, в результате чего плотность смеси в подъемной трубе становится значительно меньше плотности нефти. Вследствие этого чтобы уравновесить давление, создаваемое столбом нефти между трубами 1 и 3, столб смеси в подъемной трубе 2 удлиняется, достигает поверхности земли и поступает в выкидную линию скважины.
В зависимости от того какой газ под давлением закачивается в скважину различают два способа компрессорной добычи нефти: газлифт (рабочий агент - природный газ) и эрлифт (рабочий агент -воздух). Применение эрлифта менее распространено, т.к. при контакте с воздухом нефть окисляется.
рис. 7.13.
Вопрос 47.
При насосном способеэксплуатации подъем нефти из скважин на поверхность осуществляется штанговыми и бесштанговыми насосами.Штанговый насоспредставляет собой плунжерный насос специальной конструкции, привод которого осуществляется с поверхности посредством штанги (рис. 7.16). В нижней части насоса установлен всасывающий клапан 1. Плунжер насоса, снабженный нагнетательным клапаном 2, подвешивается на насосной штанге 3. Верхняя часть штанги пропускается через устьевой сальник 5 и соединяется с головкой балансира 6 станка-качалки. При помощи кривошипно-шатунного механизма 7 головка 9 балансира передает возвратно-поступательное движение штанге 3 и подвешенному на ней плунжеру. Станок приводится в действие электродвигателем 8 через систему передач.
Работает насос следующим образом. При ходе плунжера вверх верхний клапан 2 закрыт, так как на него действует давление вышележащего столба жидкости и плунжер работает как поршень, выталкивая нефть на поверхность. В это же время открывается приемный клапан 1 и жидкость поступает в цилиндр насоса. При ходе плунжера вниз нижний клапан закрывается, а верхний открывается и через полый плунжер жидкость выдавливается из цилиндра насоса в насосные трубы 10.
При непрерывной работе насоса в результате подкачки жидкости уровень последней в насосных трубах поднимается до устья и она поступает в выкидную линию через тройник 4.
Недостатками штанговых насосов являются громоздкость, возможность обрыва штанг, ограниченность применения в наклонных и сильнообводненных скважинах, недостаточно высокая подача, небольшие (до 2 км) глубины эксплуатации.
В связи с этим в последние годы при эксплуатации нефтяных скважин все шире применяются бесштанговые насосы(погружные электроцентробежные насосы, винтовые насосы и др).
Схема установки в скважине погружного электроцентробежного насоса(ЭЦН) приведена на рис. 7.17. Она включает центробежный многоступенчатый насос 1, погружной электродвигатель 2, подъемные трубы 3, обратный клапан 4, устьевую арматуру 5. Бронированный кабель для питания электродвигателя и источник электропитания на схеме условно не показаны.
Принцип действия установки следующий. Электрический ток из промысловой сети через автотрансформатор и станцию управления по бронированному кабелю поступает к электродвигателю 2. Вращая вал насоса 1, электродвигатель приводит его в действие. Всасываемая насосом нефть проходит через фильтр (на схеме не показан) и нагнетается по подъемным трубам 3 на поверхность. Чтобы нефть при остановке агрегата не сливалась из подъемных труб в скважину, в трубах над насосом смонтирован обратный клапан 4.
Погружной электроцентробежный насос представляет собой набор отдельных ступеней, в каждой из которых имеется свой ротор (центробежное колесо) и статор (направляющий аппарат).Роторы отдельных ступеней посажены на один вал, жестко соединенный с валом погружного электродвигателя.
Каждая из ступеней ЭЦН развивает напор 3...5.5 м. Поэтому для обеспечения напора в 800... 1000 м в корпусе насоса монтируют 150...200 ступеней.
Существенными недостатками электроцентробежных насосов являются их низкая эффективность при работе в скважинах с дебитом ниже 60 м'/сут; снижение подачи, напора и кпд при увеличении вязкости откачиваемой смеси, а также при увеличении свободного газа на приеме насоса.
Погружные винтовые насосыстали применяться на практике сравнительно недавно. Винтовой насос - это насос объемного действия, подача которого прямопропорциональна частоте вращения специального винта (или винтов). При вращении винт и его обойма образуют но всей длине ряд замкнутых полостей, которые передвигаются от приема насоса к его выкиду. Вместе с ними перемещается и откачиваемая жидкость.
Применение винтовых насосов особенно эффективно при откачке высоковязкой нефти. Схема их установки в скважине такая же как и при применении ЭЦН.
Для насосной эксплуатации скважин используются также диафрагменные, гидропоршневые и струйные насосы.
Нефтяные, газовые и газоконденсатные скважины оснащены специальным подземным и наземным оборудованием. К подземномуотносится оборудование забоя и оборудование ствола скважины, а к наземному- оборудование устья, прискважинные установки и сооружения.
рис 7.16. рис 7.17.
Вопрос 48.
Насосно-компрессорные трубы(НКТ), как и бурильные, бывают с гладкими и высаженными (равнопрочными) концами. По длине НКТ разделяются на три группы: I - от 5,5 до 8 м; II - 8...8,5 м; III - 8,5... 10 м. Изготавливают НКТ из сталей пяти групп прочности (в порядке возрастания): Д, К, Е, Л, М. Все НКТ и муфты к ним, кроме гладких группы прочности Д, подвергаются термообработке. Трубы маркируются у муфтового конца. На клейме указывается условный диаметр и толщина стенки (в мм), товарный знак завода, группа прочности (буква), месяц и год выпуска.
Для уменьшения собственного веса труб при необходимости их спуска на большую глубину применяют ступенчатую колонну НКТ с малым диаметром внизу и большим вверху.
Насосные штангивыпускаются четырех номинальных размеров по диаметру тела штанги: 16, 19, 22 и 25 мм. Концы штанг имеют утолщенные головки квадратного сечения, чем обеспечивается удобство их захвата специальными ключами при свинчивании и развинчивании колонны штанг. Штанги соединяются штанговыми муфтами.
Кроме штанг нормальной длины (8 м) выпускаются укороченные штанги длиной 1; 1,2; 1,5; 2; 3 м стандартных диаметров. Они необходимы для регулировки всей колонны штанг с таким расчетом, чтобы висящий на них плунжер перемещался в цилиндре насоса в заданных пределах. Верхний конец колонны штанг заканчивается утолщенным полированным штоком, проходящим через сальниковое уплотнение устья скважины. При использовании насосов диаметром 56 мм и выше, больших скоростях плунжера и высокой вязкости откачиваемой жидкости в нижней части колонны штанг возникают повышенные изгибы.В этом случае, чтобы предотвратить отвороты и поломки прибегают к установке «утяжеленного низа», состоящего из 2...6 толстостенных штанг общей массой 80...360 кг.Для изготовления насосных штанг используются стали марки 40 и никель-молибденовые стали марки 20НМ с термообработкой и последующим поверхностным упрочнением токами высокой
(ВОПРОС 49) Штанговые скважинные насосы
разделяются на невставные или трубные (типа НН) и вставные (типа НВ). В первом случае сложнее вести их монтаж в НКТ, но, благодаря большему диаметру цилиндра насоса, подача больше.