Травление многослойных структур

Жидкостное травление.

При жидкостном травлении металлов происходят окислительно-восстановительные реакции, а в случае неорганических оксидов - реакции замещения (кислотно-основные).

Травление SiO2.

Амфорный или плавленый кварц,- это материал, в котором каждый атом кремния имеет тетраэдрическое окружение из четырех атомов кислорода. В стеклообразных материалах могут сосуществовать как кристаллическая, так и аморфная фазы. Напыленный кварц представляет собой аморфный SiO2 из тэтраэдров SiO4. В процессе реакции травления элементарный фтор может легко замещать атом О в SiO2, так как фтор обладает меньшим ионным радиусом (0.14 нм), чем SiѕO (16 нм). Энергия связи SiѕF в 1.5 раза превышает энергию связи SiѕO. Ниже перечислены основные достоинства аморфных пленок SiO2, применяемых в полупроводниковой электронике:

1. хорошая диэлектрическая изоляция;

2. барьер для ионной диффузии и имплантации;

3. низкие внутренние напряжения;

4. высокая степень структурного совершенства и однородности пленки;

5. использование в качестве конформных покрытий, включая и покрытия ступенек;

6. высокая чистота, однородная плотность и отсутствие сквозных пор.

Аморфный SiO2 различных типов получают методами химического осаждения из паровой фазы, распыления, окисления в парах воды. Из-за внутренних напряжений оксиды, осажденные различными способами, имеют различия в строении ближнего порядка, которые влияют на скорость травления (табл. 3).

Таблица 3. Скорости травления SiO2 в буферном растворе (7;1) HF.

Метод получения оксида Относительная скорость травления (мкм/мин)
Термоокисление в парах воды1) Анодный рост Пиролитический Распыление Легированный оксид 1.0 8.5 3-10 0.5 3-5

1) Примерно 0.1 мкм/мин (20оС).

Травление SiO2 в водном растворе HF через фоторезистную маску протекает изотропно благодаря эффекту подтравливания, который усиливается частичным отслаиванием резиста. Почти анизотропные вертикальные профили могут быть получены при использовании твердой и свободной от напряжений масок из Si3N4 (рис. 9). Косые кромки получают при использовании 30:1 (по весу) раствора NH4F в HF. Ухудшение адгезии резиста или, наоборот, его хорошее сцепление (Si3N4) с поверхностью SiO2может привести к возникновению трех различных профилей травления. Химия травления SiO2 включает нуклеофильное воздействие фторидных групп на связи SiO. В буферном растворе HF (7 частей 40-процентной NH4F к одной части концентрированной HF) доминируют два типа частиц:



Травление многослойных структур - student2.ru
Рис. 9. профили полученные при использовании жидкостного травителя 6:1 NH4/HF с различными масками: а-маска Si3N4; б-фоторезистная маска. В случае (в) травление в смеси 30:1 NH4F/HF проводилось через маску фоторезиста.

F k1 H+ + F-, k1=10-3, (28)
HF+F- k2 HF-2, k2=10-1. (29)

Основной частицей в буферном растворе HF является HF-2. Эта система чувствительна к перемешиванию и, скорее всего, является диффузионно-контролируемой. На рис. 10 показана линейная зависимость скорости растворения от концентрации HF-2 и HF. Таким образом, скорость уменьшения толщины SiO2 равна

d(SiO2)/dt=A(HF)+B(HF-2)+C, (30)

где А, В и С - постоянные, при 250С равные 2, 5 и 9.7 соответственно.

Травление многослойных структур - student2.ru
Рис. 10. Линейность скорости растворения SiO2 при 23оС.

Неразбавленный раствор HF диссоциирует только до 10-3, и скорость травления в нем примерно в 4 раза меньше (0.925 мкм/мин). Неразбавленный раствор HF является также хорошо проникающим веществом, и поэтому он легко диффундирует сквозь резистную пленку, создавая в ней каналы и случайные отслоения от подложки.

Можно представить, что атака бифторидным ионом поверхности диоксида кремния включает промежуточное состояние

Травление многослойных структур - student2.ru

Во взаимодействии HF с оксидом кремния участвуют, вероятно, поверхностные состоянии

Травление многослойных структур - student2.ru

В конце концов фтор замещает кислород. Атомы водорода присоединяются к атому кислорода на поверхности SiO2, а в координационную сферу SiF4 включаются два или более ионов фтора, так что в растворе образуется SiF62-. Окончательно реакция травления может быть представлена как

6HF + SiO2  H2SiF6 + 2H2O (31)

Обнаружено, что при добавлении NH4F и H2F6 к буферному раствору HF скорость травления увеличивается благодаря образованию HF2-. При этом накапливание H2SiF6конкурирует с процессом образования осадка (NH4)2SiF6 :

H2SiF6 + NH4F  (NH4)2SiF6 + HF

Добавление более сильных нуклеофильных веществ (NH4Cl, -Br, -I) ведет к увеличению скорости (табл. 4), что свидетельствует о развитии процесса через нуклеофильное смещение.

Таблица 4. Влияние галогена на скорость травления SiO2.

Буферный ион Скорость травления (нм/сек)
F- Cl- Br- I- 1.0 2.0 2.3 3.3

Травление кремния.

Травление кремния включает стадию окисления

Si + [O]  SiO2 + 14ккал/моль (33)

и последующее травление SiO2 :

6HF + SiO2  H2SiF6 + H2O - 11ккал/моль (31)

В травителе HF/HNO3 происходит реакция

Si+2HNO3+6HF  H2SiF6+2HNO3+ 2H2O+125ккал/моль (34)

Для растворения каждого атома Si требуется две молекулы HNO3 и шесть молекул HF. Если реакция контролируется диффузией, то максимальная скорость травления должна достигаться при молярном соотношении HNO3 и HF, равном 1:3. Анализ зависимости Аррениуса для травления Si в HF/HNO3 обнаруживает излом (рис. 11), соответствующий изменению вида процесса от диффузионно-контролируемого к контролируемому скоростью реакции. Энергия активации диффузионно-контролируемого травления (6 ккал/моль) определяется диффузией HF через слой продуктов реакции. Значение этой энергии при травлении, контролируемом скоростью реакции (4 ккал/моль), определяется окислением кремния. Для диффузионно-контролируемого процесса произведение вязкость  скорость постоянно [уравнение (21)]. Для управления вязкостью добавляется ледяная уксусная кислота (рис.12).

Травление многослойных структур - student2.ru Травление многослойных структур - student2.ru
Рис. 11. Зависимость скорости травления dM/dt от величины 1000/Т при травлении Si в HNO3/HF. Рис. 12. Зависимость произведения вязкости на скорость травления(dM/dt) от температуры ля травления Si при использовании ледяной уксусной кислоты в качестве загустителя.

При изотропном травлении кремния используются маски из нетравящихся металлов Si3N4 или SiO2 (иногда для неглубокого травления). Резист используется редко, так как HFHNO3 быстро проникает через пленку. Для травления кремния использовались также щелочные травители

Si + 2OH- + H2O  SiO2 + 2H2 (35)

Этилендиамин, гидразин и OH- действуют как окислители, а пирокатехин и спирты - как комплексообразующие агенты для SiO3+. Кроме того, водород может замедлить травление поликремния. Для удаления H2 с поверхности добавляют ПАВ.

Травление многослойных структур - student2.ru
Рис. 13. преимущественное травление кремния вдоль кристаллографических направлений <100> и <110>.

Щелочные реагенты являются в основном анизотропными травителями с преимущественным воздействием на кристаллографические плоскости с малыми индексами. Плотность свободных связей (дефектов, обусловленных свободными незавершенными связями граничной кристаллической плоскости) для этих плоскостей находится в соотношении 1.00 : 0.71 : 0.58. Причина выбора (100) - ориентированного среза кремния для анизотропного травления заключается в том, что это единственная из основных плоскостей, в которой плоскости (110), (111), (100) и (211) пересекаются с регулярной симметрией. Поэтому эта ориентация наиболее предпочтительна при травлении глубоких канавок в кремнии. Следует отметить, что геометрия поверхности, создаваемой изотропным травлением, будет зависеть от геометрии первоначальной поверхности, так как выпуклые поверхности ограничивают быстро травящиеся плоскости, а медленно травящиеся плоскости останавливаются на вогнутой поверхности. В направлении<100> скорость травления в 100 раз выше, чем в направлении <111>. На рис. 13 показан пример преимущественного травления 54о- ой канавки в пересечении 110/100/111 смесью KOH изопропанола при 85оС. KOH и изопропанол являются травителями с соотношением скоростей травления 55:1 для направлений <100> и <111>.

При добавлении к травителю спиртов, которые адсорбируются преимущественно на плоскости (111), можно осуществить анизотропное травление в других направлениях. Скорость травления лимитируется диффузией с энергией активации 4 ккал/моль, так как щелочь должна диффундировать сквозь барьер из комплексов кремния.

Травление многослойных структур - student2.ru
Рис. 14. Анизотропное (а) и изотропное (б) жидкостное травление эпитаксиального кремния.

Другой травитель для моно- и поликристаллического кремния состоит из этилендиамина и пирокатехина и имеет энергию активации 8 ккал/моль: NH2(CH2)2NH2+Si+3(OH)   2H2+Si(O2)3+2NH2(CH2)3NH3 (36)

п ри добавлении к реагентам 1000 ppm (1 ppm=1часть на миллион) ароматического пиразина достигалось увеличение энергии активации до 11 ккал/моль и селективности травления плоскостей (100) и (111) с 10 до 20. Травление кремния применяется также с диагностическими целями для выявления точечных проколов SiO2. Кремний, легированный бором, травится медленнее нелегированного кремния.

Травление многослойных структур - student2.ru
Рис. 15. Зависимость угла травления поликремния  от содержания воды в травителе KOH/спирт/Н2О.

Эффективность сглаживания поверхности поликремния в смеси KOH и спирта зависит от содержания воды в травителе. В безводных спиртах получаются изотропные профили. Степень анизотропии определяется содержанием воды в травители (рис. 15). Изотропные травители для кремния перечислены в табл. 6. Краткие сведения об анизотропных травителях для кремния приведены в табл. 7.

Таблица 5. Изотропное и анизотропное травление кремния.

Травитель Скорость травления, мкм/мин Подтравливание (мкм/сторону)1)
  PS ES BS PS ES BS
Изотропный2) 1.5d 1.5d 1.5d
Изотропный3) 0.8 0.6 0.5 1.0d 1.0d 1.0d
Анизотропный4) 0.7 0.9 1.1 (0.1-1.0)d <0.1d <0.1d

1) d- глубина травления.
2) HNO3 (65%)/HF(40%)/NaNO2=95/5 мл/г.
3) HNO3(65%)/H2O/HF(40%)=100/40/6мл.
4) KOH/H2O/n-пропанол=15г/50/15 мл.

Таблица 6. Изотропные травители для кремния.

Травитель Применение
HF, HNO3, CH3COOH Все разновидности Si
HF, HNO3, CH3COOH Низкоомный Si
HF, KMnO4, CH3COOH Эпитаксиальный Si
HF, HNO3, H2O2+NH4OH Удаление примесей Cu
HF, HNO3, CH3COOH pnp - многослойные структуры
HF, HNO3 pnp - многослойные структуры
NHF, H2O2 Минимальное подтравливание
HF, HNO3, I2 Общее травление
HF, HNO3, CH3COOH Подтравливание плоскости (100)
HNO3, HBF4, NH4BF4 Маска из резиста AZ-1350
NH4F, H2O2, NH4HPO4 Скорости травления, Si/ФСС=2/1
KOH+спирт Поликристаллический Si

Таблица 7. Анизотропные травители для кремния.

Травитель Применение
Этиледиамин, пирокатехин, H7O
Этиледиамин, пирокатехин SiO2, Si3N4, выявление точечных проколов
Гидразин, ИПС, H2O 100, Al-маска
КОН, sec-спирты
КОН, этиленгликоль Текструрирование элементов солнеч-ных батарей
Диамины, КОН, ИПС Не разрушается Al
КОН, ИПС, H2O
R3N+OH, ИПС, H2O
R3N+OH, поверхностно-активное вещество H2
R3N+OH Устранение Na+ из травителя
H3PO4+следы As2O3 n-тип
CuF2, маска из резиста AZ-1350 Электролитическое травление

Травление многослойных структур.

Травление различных слоев многослойной структуры проводится в одном травителе простого или сложного состава. Желательно пользоваться однокомпонентным травителем. Основная проблема заключается в выборе травителя, обеспечивающего одинаковую скорость травления всех слоев, что предотвращает образование “елочного” профиля. Наиболее интенсивно изучалось травление сандвича Si3N4/SiO2, равенство скоростей травления которого требуется для получения окон с гладкими наклонными стенками. Пленки Si3N4 травятся лишь в HF или в кипящей H3PO4 при 180оС. В столь жестких условиях ни один из органических резистов не выдерживает. Травление Si3N4 в HF происходит по тому же закону, который определил Джадж для травления SiO2:

Cкорость травления=А(HF)+B(HF2-)+C (37)

Керн и Деккерт всесторонне рассмотрели травление Si3N4. В HF модно получить равные, но небольшие - около 10 нм/мин - скорости травления Si3N4 и SiO2:

1. подбором температуры и

2. соотношения HF/HF2-.

Скорость травления оксида можно снизить до 10 нм/мин, разбавляя 10%-ную плавиковую кислоту. При низкой концентрации HF растворение SiO2 лимитируется не скоростью реакции, а диффузией (4 ккал/моль). Подбирая температуру смеси фосфорной или фторборной кислот, можно довести скорости травления SiO2 и Si3N4 до 10 нм/мин. Фосфорная кислота, однако, разрушает нижележащие слои Si и Al, что может быть уменьшено добавлением серной кислоты. Добавка диолефинов также предотвращает разрушение нижележащего слоя Al.

Травление многослойных структур - student2.ru
Рис.16. Травление сандвича Si3N4/SiO2: а-большая скорость травления SiO2; б-изотропное травление с одинаковыми скоростями.

Более высокие, но равные скорости травления были получены за счет изменения вязкости травителя при добавлении глицерина или других вязких спиртов (до 50% по массе), замещающих воду. Для смягчения действия HF добавляется также NH4F. Типичные края профилей травления в Si3N4/SiO2 показаны на рис. 16.

В другом подходе, включающем в себя обратное травление, используется слой вольфрама, нанесенный поверх SiO2/ Si3N4 и прорисованный через резистную маску. Сначала подтравливается слой оксида, затем удаляется W, и слой Si3N4 профилируется через оксидную маску с требуемой топологией. Компромиссным составом для травления сандвича резист / Si3N4/ боросиликатное стекло является смесь 70% H3PO4, 29% глицерина и 1% HBF4 при температуре 103оС. При более высоких концентрациях HBF4наблюдается быстрая эрозия резистов KTFR и AZ-1350.

Наши рекомендации