Расчёт ВЭР на экономическую эффективность

Исходной информацией для расчёта выхода и возможного использования ВЭР служат: тепловые и материальные балансы основного технологического оборудования; объём выпуска продукции в рассматриваемом периоде; отчётный энергетический баланс предприятия; технико-экономические характеристики технологических агрегатов, энергетических и утилизационных установок; планы внедрения новой технологии и нового оборудования на перспективу.

В результате анализа всех этих материалов устанавливают виды ВЭР и их потенциал; выявляют агрегаты, ВЭР которых могут быть включены в энергетический баланс предприятия или использованы вне данного предприятия; определяют по каждому агрегату выход ВЭР; рассчитывают

величину возможной, экономически целесообразной и планируемой выработки энергии из каждого вида ВЭР; определяют величины фактической выработки и фактического использования ВЭР, а также возможного и планируемого использования всех видов ВЭР.

Выход ВЭР зависит от факторов и режима работы технологической установки (агрегата). В общем случае суточный (и сезонный) выход ВЭР характеризуется значительной неравномерностью. Поэтому различают показатели удельного и общего выхода ВЭР – максимальный, средний и минимальный (гарантированный), как в суточном, так и сезонном разрезе. В любом случае утилизации ВЭР эффективность их использования определяется достигаемой экономией первичного топлива и обеспечиваемой за счёт этого экономией затрат на добычу, транспортирование и распределения топлива (энергии). Поэтому важное условие экономической эффективности ВЭР – правильное определение вида и количества топлива, которое экономится при их утилизации.

Экономия топливо зависит от направления использования ВЭР и схем топливо- и энергоснабжения предприятия. При тепловом направлении использования ВЭР экономия топлива определяется путём сопоставления количества тепла, полученного от использования ВЭР, с технико-экономическими показателями выработки того же количества и тех же параметров тепла в основных энергетических установках. При силовом направлении использования ВЭР выработка электроэнергии (или механической энергии) сопоставляется с затратами топлива на выработку электроэнергии (или механической энергии) в основных энергоустановках.

При определении экономической эффективности использования ВЭР сопоставляют варианты энергоснабжения, которые удовлетворяют потребности данного производства во всех видах энергии с учётом использования ВЭР, удовлетворяют те же потребности и без учёта использования ВЭР. Основными показателями сопоставимости этих вариантов служат: создание оптимальных (для каждого из вариантов) условий их реализации; обеспечение одинаковой надёжности энергосбережения; достижение необходимых санитарно-гигиенических условий и безопасности труда; наименьшее загрязнение окружающей среды.

Одно из основных направлений повышения эффективности производства и использование энергетических ресурсов в промышленности – увеличение единичной мощности агрегатов, концентрация производства и создание укрупнённых комбинированных технологических процессов. Особенно это эффективно для технологических процессов с большим выходом тепловых ВЭР, т.е. для предприятий химической, нефтеперерабатывающей, целлюлозно-бумажной и металлургической промышленности.

Создание крупных комбинированных производств позволяет использовать ВЭР одних процессов для нужд других, входящих в общий комбинированный комплекс.

Заключение.

По мере увеличения затрат на добычу топлива и производства энергии возрастает необходимость в более полном использовании их при преобразовании в виде горючих газов, тепла нагретого воздуха и воды. Хотя утилизация ВЭР нередко связана с дополнительными капитальными вложениями и увеличением численности обслуживающего персонала, опыт передовых предприятий подтверждает, что использование ВЭР экономически весьма выгодно. На нефтеперерабатывающих и нефтехимических заводах капитальные вложения в утилизационные установки окупаются в среднем за 0,8 – 1,5 года.

Таким образом, повышение уровня утилизации вторичных энергетических ресурсов обеспечивает не только значительную экономию топлива, капитальных вложений и предотвращения загрязнения окружающей среды, но и существенное снижение себестоимости продукции нефтеперерабатывающих и нефтехимических предприятий.

Топливно-энергетические ресурсы

Ископаемый уголь

Расчёт ВЭР на экономическую эффективность - student2.ru

Расчёт ВЭР на экономическую эффективность - student2.ru

Уголь

Уголь — вид ископаемого топлива, образовавшийся из частей древних растений под землей без доступа кислорода. Международное название углерода происходит от лат. carbō («уголь»). Уголь был первым из используемых человеком видов ископаемого топлива. Он позволил совершить промышленную революцию, которая в свою очередь способствовала развитию угольной промышленности, обеспечив её более современной технологией.

В среднем, сжигание одного килограмма этого вида топлива приводит к выделению 2,93 кг CO2 и позволяет получить 6,67 кВт·ч энергии или, при КПД 30% — 2,0 кВт·ч электричества. В 1960 году уголь давал около половины мирового производства энергии, к 1970 году его доля упала до одной трети. Использование угля увеличивается в периоды высоких цен на нефть и другие энергоносители.

 

Образование угля

Для образования угля необходимо обильное накопление растительной массы. В древних торфяных болотах, начиная с девонского периода (примерно 416 млн лет назад), накапливалось органическое вещество, из которого без доступа кислорода формировались ископаемые угли. Большинство промышленных месторождений ископаемого угля относится к этому периоду, хотя существуют и более молодые месторождения. Возраст самых древних углей оценивается примерно в 300-400 миллионов лет[1].

Уголь образуется в условиях, когда гниющий растительный материал накапливается быстрее, чем происходит его бактериальное разложение. Идеальная обстановка для этого создаётся в болотах, где стоячая вода, обеднённая кислородом, препятствует жизнедеятельности бактерий и тем самым предохраняет растительную массу от полного разрушения. На определённой стадии процесса выделяемые в ходе него кислоты предотвращают дальнейшую деятельность бактерий. Так возникает торф — исходный продукт для образования угля. Если затем происходит его захоронение под другими наносами, то торф испытывает сжатие и, теряя воду и газы, преобразуется в уголь.

Под давлением наслоений осадков толщиной в 1 километр из 20-метрового слоя торфа получается пласт бурого угля толщиной 4 метра. Если глубина погребения растительного материала достигает 3 километров, то такой же слой торфа превратится в пласт каменного угля толщиной 2 метра. На большей глубине, порядка 6 километров, и при более высокой температуре 20-метровый слой торфа становится пластом антрацита толщиной в 1,5 метра.

В результатах движения земной коры угольные пласты испытывали поднятие и складкообразование. С течением времени приподнятые части разрушались за счёт эрозии или самовозгорания, а опущенные сохранялись в широких неглубоких бассейнах, где уголь находится на уровне не менее 900 метров от земной поверхности. Образование наиболее мощных угольных пластов связано с областями земной коры, которые на протяжении значительного времени — в течение миллионов лет — подвергались постепенному тектоническому опусканию со скоростью накопления торфа на поверхности. В отдельных случаях, как, например, в Хат-Крик (англ.)русск. (Канада), мощность одного угольного пласта может достигать 500 м и более.[2]

Виды угля

Уголь, подобно нефти и газу, представляет собой органическое вещество, подвергшееся медленному разложению под действием биологических и геологических процессов. Основа образования угля — растительные остатки. В зависимости от степени преобразования и удельного количества углерода в угле различают четыре его типа: бурые угли (лигниты), каменные угли, антрациты и графиты. В западных странах имеет место несколько иная классификация — лигниты, суббитуминозные угли, битуминозные угли, антрациты и графиты, соответственно.

Антрацит — самый глубоко прогревавшийся при своем возникновении из ископаемых углей, уголь наиболее высокой степени углефикации. Характеризуется большой плотностью и блеском. Содержит 95 % углерода. Применяется как твердое высококалорийное топливо (теплотворность 6800-8350 ккал/кг). Имеют наибольшую теплоту сгорания, но плохо воспламеняются. Образуются из каменного угля при повышении давления и температуры на глубинах порядка 6 километров.

Каменный уголь

Каменный уголь — осадочная порода, представляющая собой продукт глубокого разложения остатков растений (древовидных папоротников, хвощей и плаунов, а также первых голосеменных растений). Большинство залежей каменного угля было образовано в палеозое, преимущественно в каменноугольном периоде, примерно 300—350 миллионов лет тому назад. По химическому составу каменный уголь представляет смесь высокомолекулярных полициклических ароматических соединений с высокой массовой долей углерода, а также воды и летучих веществ с небольшими количествами минеральных примесей, при сжигании угля образующих золу. Ископаемые угли отличаются друг от друга соотношением слагающих их компонентов, что определяет их теплоту сгорания. Ряд органических соединений, входящих в состав каменного угля, обладает канцерогенными свойствами.

Содержание углерода в каменном угле, в зависимости от его сорта, составляет от 75 % до 95 %. Содержат до 12 % влаги (3-4 % внутренней), поэтому имеют более высокую теплоту сгорания по сравнению с бурыми углями. Содержат до 32 % летучих веществ, за счёт чего неплохо воспламеняются. Образуются из бурого угля на глубинах порядка 3 километров.

Маркировка угля

Маркировка угля — установлена с целью рационального промышленного использования угля. Угли подразделяются на марки и технологические группы; в основу такого подразделения положены параметры, характеризующие поведение углей в процессе термического воздействия на них.[1] Российская классификация отличается от западной.

Наши рекомендации