Мировой объем производства основных материалов

Лекция №1

Содержание лекции:

ВВЕДЕНИЕ. ЗАДАЧИ КУРСА. КЛАССИФИКАЦИЯ ТЕХНИЧЕСКИХ МАТЕРИАЛОВ. МАТЕРИАЛЫ МЕТАЛЛИЧЕСКИЕ, НЕМЕТАЛЛИЧЕСКИЕ, КОМПОЗИЦИОННЫЕ. СОДЕРЖАНИЕ ЭЛЕМЕНТОВ В ЗЕМНОЙ КОРЕ. МИРОВОЙ ОБЪЕМ ПРОИЗВОДСТВА ОСНОВНЫХ МАТЕРИАЛОВ. СТРУКТУРНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ. ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЕТОК, ОСОБЕННОСТИ СТРОЕНИЯ РЕАЛЬНЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ.

Введение. Задачи курса

Материаловедение - научная дисциплина о структуре, свойствах и назначении материалов. Свойства технических материалов формируются в процессе их изготовления. При одинаковом химическом составе, но разной технологии изготовления, образуется разная структура, и вследствие, свойства.

Цель настоящей дисциплины - изучение закономерностей формирования структуры и свойств материалов методами их упрочнения для эффективного использования в технике.

Основная задача дисциплины - установить зависимость между составом, строением и свойствами, изучить термическую, химико-термическую обработку и другие способы упрочнения, сформировать знания о свойствах основных разновидностей материалов.

Классификация материалов

Назначение материала определяется требованиями конструкции (конструкционные критерии - прочность, долговечность, коррозийные свойства и т.п.) и возможностью переработки в изделие (технологические критерии - коэффициент обрабатываемости резанием, сварки и обработки давлением и т.п.). Выбор материала с использованием классификации осуществляется по двум основным критериям. В общем случае классификация материалов включат в себя три основных разновидности материалов: металлические материалы, неметаллические материалы, композиционные материалы. По геометрическим признакам материалы и вещества принято классифицировать по виду полуфабрикатов: листы, профили, гранулы, порошки , волокна и т.п.. Поскольку материал того или иного полуфабриката изготавливается по разной технологии, применяют разделение по структуре.

Металлические материалы принято классифицировать по основному компоненту. Различают черную и цветную металлургию. К материалам черной металлургии принадлежат стали, чугуны, ферросплавы и сплавы на основе железа, легированные цветными металлами в количестве превосходящим стали. К материалам цветной металлурги принадлежат важнейшие цветные металлы - алюминий, медь, цинк, свинец, никель, олово и сплавы на их основе. К металлическим материалам относятся и материалы порошковой металлургии. Неметаллические материалы различают по основным классам: резина, керамика, стекло, пластические массы, ситаллы. Композиционными материалы - сложные или составные материалы, состоящие из двух разнородных материалов (например: стекла и пластмассы - стеклопластики) принято классифицировать по типу структуры, материалу матрицы, назначению и способу изготовления. Более подробно классификация материалов будет изложена ниже в разделах лекционного курса. Технические материалы принято классифицировать по назначению: материалы приборостроения, машиностроительные материалы, и более подробно, например стали для судостроения или мостостроения. В научном аспекте материалы разделяют по типу структуры: аморфные, кристаллические, гетерофазные. При выборе материала для той или иной детали или конструкции учитывают экономическую целесообразность его применения. Стоимость технического материала связана с затратами на его производство и уровнем запасов его в промышленном и государственном резервах, с содержанием в Земной коре веществ и элементов, необходимых для его производства. Поэтому так важно знание инженера о содержании элементов и веществ в земной коре. В последние годы в классификации машиностроительных материалов применяют параметры удельной прочности и энергрозатрат производства материалов. Они показывают, что наилучшими сочетаниями свойств для машин обладают титан и алюминий. Классификация известных материалов находит свое отражение в Государственных Стандартах (ГОСТ).

Содержание элементов в Земной коре

Исторически для Техники наиболее важными были металлы и сплавы, в первую очередь стали и чугуны, медь.

Содержание металлов и элементов в Земной коре следующие:

Медь Сu = 0,01%, Серебро = 4·10-6%, Олово =6·10-4%, Титан = 0,58%, Магний =1,94%, Золото =5·10-7%, Бериллий = 5·10-4%, Цинк = 2·10-2%, Железо = 4,7%, Алюминий = 7,5%, Кремний Si = 25,7%, Свинец = 8·10-4%, Хром = 3,3·10-2%, Никель = 1.8·10-2%.

Анализ приведенных данных показывает, что наиболее перспективным элементом для использования в технике является Алюминий, это совпадает с общемировой тенденцией машиностроения. Усилия разработчиков новых материалов направлены на создание материалов на основе тугоплавких соединений: нитридов и боридов в кристаллической и аморфной формах, пригодных для применения. Наибольшее распространение в авиационной, космической и специальной технике приобретает нитрид кремния (SiN).

Так как материальные ресурсы Земли ограничены, это находит свое отражение в формировании цен, перед машиностроением всегда стоит задача расширения сырьевой базы и сокращения затрат материалов на единицу техники.

Мировой объем производства основных материалов

Элементы, преимущественно металлические, находятся в Земной коре в виде окислов, нитридов, гидридов и гидратов, хлоридов и т.п., для превращения минерального сырья в полуфабрикакты необходимы значительные затраты энергии и дополнительных видов минералов и веществ. Наименьшими потерями среди технических материалов обладает производство стали и чугуна, что положительно сказывается на их относительной стоимости. Мировой объем производства основных материалов следующий: стали = 700 мл.т, конструкционного чугуна = 46 мл.т, пластических масс = 100 мл.т, конструкционных стекла и керамики = 180 мл.т. Отметим, что плотность пластмасс в 2-3 раза ниже, чем металлов, и в объемных процентах пластмасс выпускается в 2 раза больше других материалов. Отличительной особенностью современного машиностроения является расширение номенклатуры применяемых материалов. Среди металлических материалов мировой объем производства следующий: Алюминий = 12,2, Медь = 7,3, Цинк = 4,68, Свинец = 3,77, Никель = 0,52 (мл.т). Наибольшие темпы роста производства у композиционных и порошковых материалов.

Наши рекомендации